In: Math
(a) Suppose you are given the following (x, y) data pairs. x: 1 2 6 y: 4 3 9 Find the least-squares equation for these data (rounded to three digits after the decimal). ŷ = + x
(b) Now suppose you are given these (x, y) data pairs. x 4 3 9 y 1 2 6 Find the least-squares equation for these data (rounded to three digits after the decimal). ŷ = + x
(c) In the data for parts (a) and (b), did we simply exchange the x and y values of each data pair? Yes No
(d) Solve your answer from part (a) for x (rounded to three digits after the decimal). x = + y Do you get the least-squares equation of part (b) with the symbols x and y exchanged? Yes No
(e) In general, suppose we have the least-squares equation y = a + bx for a set of data pairs (x, y). If we solve this equation for x, will we necessarily get the least-squares equation for the set of data pairs (y, x), (with x and y exchanged)? Explain using parts (a) through (d).
In general, switching x and y values produces the same least-squares equation.
In general, switching x and y values produces a different least-squares equation.
Switching x and y values sometimes produces the same least-squares equation and sometimes it is different.
a)
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.940634162 | |||||
| R Square | 0.884792627 | |||||
| Adjusted R Square | 0.769585253 | |||||
| Standard Error | 1.5430335 | |||||
| Observations | 3 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 18.2857143 | 18.2857143 | 7.68 | 0.220463 | |
| Residual | 1 | 2.38095238 | 2.38095238 | |||
| Total | 2 | 20.6666667 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | 1.904761905 | 1.52455339 | 1.2493901 | 0.42970499 | -17.4665256 | 21.2760494 |
| x | 1.142857143 | 0.41239305 | 2.77128129 | 0.220463 | -4.09709337 | 6.38280766 |
y^ = 1.9048 + 1.1429 x
b)
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.940634162 | |||||
| R Square | 0.884792627 | |||||
| Adjusted R Square | 0.769585253 | |||||
| Standard Error | 1.27000127 | |||||
| Observations | 3 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 12.3870968 | 12.3870968 | 7.68 | 0.220463 | |
| Residual | 1 | 1.61290323 | 1.61290323 | |||
| Total | 2 | 14 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | -1.129032258 | 1.66058551 | -0.6799001 | 0.61986902 | -22.2287717 | 19.9707072 |
| x | 0.774193548 | 0.27936303 | 2.77128129 | 0.220463 | -2.77545035 | 4.32383745 |
y^ = -1.129 + 0.7742 * x
c)
yes
d)
x^ = -1.129 + 0.7742 * y