Question

In: Advanced Math

Expand in Fourier series: f(x) = x|x|, -L<x<L, L>0 f(x) = cosx(sinx)^2 , -pi<x<pi f(x) =...

Expand in Fourier series:

f(x) = x|x|, -L<x<L, L>0

f(x) = cosx(sinx)^2 , -pi<x<pi

f(x) = (sinx)^3, -pi<x<pi

 

 

Solutions

Expert Solution

fourier coefficient s are zero in the derivation due to function criteria and somewhere by easy calculation.


Related Solutions

Expand in Fourier series: Expand in fourier sine and fourier cosine series of: f(x) = x(L-x),...
Expand in Fourier series: Expand in fourier sine and fourier cosine series of: f(x) = x(L-x),    0<x<L Expand in fourier cosine series: f(x) = sinx, 0<x<pi Expand in fourier series f(x) = 2pi*x-x^2, 0<x<2pi, assuming that f is periodic of period 2pi, that is, f(x+2pi)=f(x)
Find the Fourier series of the following functions f(x) = sinx+x^2+x, −2 < x < 2
Find the Fourier series of the following functions f(x) = sinx+x^2+x, −2 < x < 2
sketch the fourier series of f(x) on the interval -L <= x <= L for A)...
sketch the fourier series of f(x) on the interval -L <= x <= L for A) f(x) = (x when x < L/2 and 0 when > L/2) B) f(x) = e^-x
Find the real Fourier series of the piece-wise continuous periodic function f(x)=1+x+x^2 -pi<x<pi
Find the real Fourier series of the piece-wise continuous periodic function f(x)=1+x+x^2 -pi<x<pi
Find the Fourier series expansion of f(x)=sin(x) on [-pi,pi]. Show all work and reasoning.
Find the Fourier series expansion of f(x)=sin(x) on [-pi,pi]. Show all work and reasoning.
Find the real Fourier series of the piece-wise continuous periodic function f(x) = x+sin(x) -pi<=x<pi
Find the real Fourier series of the piece-wise continuous periodic function f(x) = x+sin(x) -pi<=x<pi
Represent f(x)=sinx as the sum of its Taylor series centered at x=pi/6. Find the radius of...
Represent f(x)=sinx as the sum of its Taylor series centered at x=pi/6. Find the radius of convergence.
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx - sin3x
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx, ut(x,0) = pi - x
Calculate the fourier series of these periodic functions f(x) = cosh(2πax + πa), x ∈ [0,...
Calculate the fourier series of these periodic functions f(x) = cosh(2πax + πa), x ∈ [0, 1) and f(x) = cos(2πax − aπ) x ∈ [0, 1). The period of these functions is 1. 1-periodic
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT