Question

In: Computer Science

Using the backward substitution method, solve the following recurrence relations: a.T(n)= T(n−1)+3forn>1 ,T(1)=0 b.T(n)=3T(n−1) forn>1 ,T(1)=7...

Using the backward substitution method, solve the following recurrence relations: a.T(n)= T(n−1)+3forn>1 ,T(1)=0 b.T(n)=3T(n−1) forn>1 ,T(1)=7 c.T(n)= T(n−1)+n for n>0 ,T(0)=0 d.T(n)= T(n/2)+n for n>1 ,T(1)=1(solve for n=2k) e.T(n)= T(n/3)+1forn>1 ,T(1)=1(solve for n=3k)

Solutions

Expert Solution

We have put all the question in the above images.

Some formula are use like sum of A.P.(arithmetic progression) in question d.


Related Solutions

1. Using domain and range transformations, solve the following recurrence relations: a) T(1) = 1, T(n)...
1. Using domain and range transformations, solve the following recurrence relations: a) T(1) = 1, T(n) = 2T(n/2) + 6n - 1 b) T(1) = 1, T(n) = 3T(n/2) + n^2 - n
Solve the recurrence equation. T(n) = 3T (n/3) + Cn T(1) = C
Solve the recurrence equation. T(n) = 3T (n/3) + Cn T(1) = C
Solve the recurrence equations by Substitution a) T(n) = 4T (n/2) + n, T (1) =...
Solve the recurrence equations by Substitution a) T(n) = 4T (n/2) + n, T (1) = 1 b) T(n) = 4T (n/2) + n2 , T (1) = 1 c) T(n) = 4T (n/2) + n3 , T (1) = 1
Solve the following recurrence relations. a. x(n) = x(n − 1) + 3 for n >...
Solve the following recurrence relations. a. x(n) = x(n − 1) + 3 for n > 1, x(1) = 0 b. x(n) = 5x(n − 1) for n > 1, x(1) = 6 c. x(n) = x(n/5) + 1 for n > 1, x(1) = 1 (solve for n = 5k )
Give upper and lower bounds for T(n) in the following recurrence: T(n) = 3T(n/4) + n
Give upper and lower bounds for T(n) in the following recurrence: T(n) = 3T(n/4) + n
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an =...
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an = an-1 + 6an-2 - 2n+1 with a0 = -4, a1= 5 b) an = an-1 + 6an-2 + 5 x 3n with a0 = 2, a1 = 5 c) an = an-1 + 6an-2 - 36n with a0 = 10, a1= 40
Show for the following recurrence that T(n) = T(n/3) + n*log(n) is O(n*log(n)) (not using the...
Show for the following recurrence that T(n) = T(n/3) + n*log(n) is O(n*log(n)) (not using the Master theorem please)
Solve the following recurrence relation for the given initial conditions. y(n+2) - 0.3y(n + 1) + 0.02y(n) = 10 y(0) = 2; y(1) = 0
Solve the following recurrence relation for the given initial conditions.y(n+2) - 0.3y(n + 1) + 0.02y(n) = 10        y(0) = 2;    y(1) = 0
Solve the following system of equations using the Substitution Method. 1.x + 3y = – 2...
Solve the following system of equations using the Substitution Method. 1.x + 3y = – 2 5x + 15y = 0 2. x – 4y = 10 3x – 2y = 10 3. 4a + 7b = 54 2a – 3b = 14 4. 2x – 3y = 1 8x – 12y = 4 5. 3x + 4y = 12 6x + 8y = 24 6.  2a – 5b = 10 3a – b = 2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT