In: Computer Science
Use the substitution method to prove the solutions for the following recurrences:
| 
 Recurrence  | 
 Solution  | 
|
| 
 1  | 
 T(n) = T(n-1) + n  | 
 O(n2)  | 
| 
 2  | 
 T(n) = T(n/2) + 1  | 
 O(lgn)  | 
| 
 3  | 
 T(n) = T(n/2) + n  | 
 ϴ(nlgn)  | 
| 
 4  | 
 T(n) = 3T(n/2) + n  | 
 O(nlg(3)).  | 
| 
 5  | 
 T(n) = 2T(n/2) + n2  | 
 O(n2)  | 
| 
 6  | 
 T(n) = 4T(n/2 + 2) + n  | 
 O(n2)  | 
| 
 7  | 
 T(n) = 2T(n – 1) + 1  | 
 O(2n)  | 
| 
 8  | 
 T(n) = T(n – 1) + T(n/2) + n  | 
 O(2n)  | 
| 
 9  | 
 T(n) = 4T(n/2) + cn.  | 
 ϴ(n2)  |