Solve the following recurrence relations. a. x(n) = x(n − 1) + 3
for n > 1, x(1) = 0 b. x(n) = 5x(n − 1) for n > 1, x(1) = 6
c. x(n) = x(n/5) + 1 for n > 1, x(1) = 1 (solve for n = 5k )
6. Solve the following recurrence relations
t(n) = t(n-1) + 3 for n>1
t(1) = 0
t(n) = t(n-1) + n for n>1
t(1) = 1
t(n) = 3t(n/2) + n for n>1, n is a power
of 2
t(1) = ½
t(n) = 6t(n-1) – 9t(n-2) for n>1
t(0) = 0 t(1) = 1
1. Using domain and range transformations, solve the following
recurrence relations:
a) T(1) = 1, T(n) = 2T(n/2) + 6n - 1
b) T(1) = 1, T(n) = 3T(n/2) + n^2 - n
Solve the recurrence equations by Substitution
a) T(n) = 4T (n/2) + n, T (1) = 1
b) T(n) = 4T (n/2) + n2 , T (1) = 1
c) T(n) = 4T (n/2) + n3 , T (1) = 1
Consider the following non-homogeneous linear recurrence:
an =−an-1
+6an-2+125(8+1)·(n+1)·2n
a0 = 0
a1 = 0
(b) Find the solution
an(h) to the associated
homogeneous linear recurrence. n
(c) Find a particular solution
anp to the non-homogeneous linear
recurrence.
(d) Find the general solution to the non-homogeneous
linear recurrence.
Solve the following recurrence relations: (find an asymptotic
upper bound O(?) for each one)
a. T(n) = T(2n/3)+T(n/3) + n^2
b. T(n) = √nT(√n) + n
c. T(n) = T(n-1)+T(n/2) + n
The base case is that constant size problems can be solved in
constant time (O(1)). You can use the induction, substitution or
recursion tree method
Using the backward substitution method, solve the following
recurrence relations: a.T(n)= T(n−1)+3forn>1 ,T(1)=0
b.T(n)=3T(n−1) forn>1 ,T(1)=7 c.T(n)= T(n−1)+n for n>0
,T(0)=0 d.T(n)= T(n/2)+n for n>1 ,T(1)=1(solve for n=2k) e.T(n)=
T(n/3)+1forn>1 ,T(1)=1(solve for n=3k)