Question

In: Math

Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an =...

Solve the given non-homogeneous recurrence relations:

an = an-1 + 6an-2 + f(n)

a)

an = an-1 + 6an-2 - 2n+1 with a0 = -4, a1= 5

b)

an = an-1 + 6an-2 + 5 x 3n with a0 = 2, a1 = 5

c)

an = an-1 + 6an-2 - 36n with a0 = 10, a1= 40

Solutions

Expert Solution


Related Solutions

Solve the following recurrence relations. a. x(n) = x(n − 1) + 3 for n >...
Solve the following recurrence relations. a. x(n) = x(n − 1) + 3 for n > 1, x(1) = 0 b. x(n) = 5x(n − 1) for n > 1, x(1) = 6 c. x(n) = x(n/5) + 1 for n > 1, x(1) = 1 (solve for n = 5k )
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0...
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0 t(n) = t(n-1) + n   for n>1 t(1) = 1 t(n) = 3t(n/2) + n    for n>1, n is a power of 2 t(1) = ½ t(n) = 6t(n-1) – 9t(n-2)   for n>1 t(0) = 0 t(1) = 1
1. Using domain and range transformations, solve the following recurrence relations: a) T(1) = 1, T(n)...
1. Using domain and range transformations, solve the following recurrence relations: a) T(1) = 1, T(n) = 2T(n/2) + 6n - 1 b) T(1) = 1, T(n) = 3T(n/2) + n^2 - n
Solve the recurrence equations by Substitution a) T(n) = 4T (n/2) + n, T (1) =...
Solve the recurrence equations by Substitution a) T(n) = 4T (n/2) + n, T (1) = 1 b) T(n) = 4T (n/2) + n2 , T (1) = 1 c) T(n) = 4T (n/2) + n3 , T (1) = 1
Consider the following non-homogeneous linear recurrence: an =−an-1 +6an-2+125(8+1)·(n+1)·2n a0 = 0 a1 = 0 (b)...
Consider the following non-homogeneous linear recurrence: an =−an-1 +6an-2+125(8+1)·(n+1)·2n a0 = 0 a1 = 0 (b) Find the solution an(h) to the associated homogeneous linear recurrence. n (c) Find a particular solution anp to the non-homogeneous linear recurrence. (d) Find the general solution to the non-homogeneous linear recurrence.
Solve the following recurrence relation for the given initial conditions. y(n+2) - 0.3y(n + 1) + 0.02y(n) = 10 y(0) = 2; y(1) = 0
Solve the following recurrence relation for the given initial conditions.y(n+2) - 0.3y(n + 1) + 0.02y(n) = 10        y(0) = 2;    y(1) = 0
Solve the following recurrence relations: (find an asymptotic upper bound O(?) for each one) a. T(n)...
Solve the following recurrence relations: (find an asymptotic upper bound O(?) for each one) a. T(n) = T(2n/3)+T(n/3) + n^2 b. T(n) = √nT(√n) + n c. T(n) = T(n-1)+T(n/2) + n The base case is that constant size problems can be solved in constant time (O(1)). You can use the induction, substitution or recursion tree method
Using the backward substitution method, solve the following recurrence relations: a.T(n)= T(n−1)+3forn>1 ,T(1)=0 b.T(n)=3T(n−1) forn>1 ,T(1)=7...
Using the backward substitution method, solve the following recurrence relations: a.T(n)= T(n−1)+3forn>1 ,T(1)=0 b.T(n)=3T(n−1) forn>1 ,T(1)=7 c.T(n)= T(n−1)+n for n>0 ,T(0)=0 d.T(n)= T(n/2)+n for n>1 ,T(1)=1(solve for n=2k) e.T(n)= T(n/3)+1forn>1 ,T(1)=1(solve for n=3k)
Use recursion tree to solve the recurrence: T(n) = T(n/15) + T(n/10) + 2T(n/6) + n^(1/2)
Use recursion tree to solve the recurrence: T(n) = T(n/15) + T(n/10) + 2T(n/6) + n^(1/2)
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT