Question

In: Advanced Math

Solve the recurrence equations by Substitution a) T(n) = 4T (n/2) + n, T (1) =...

Solve the recurrence equations by Substitution

a) T(n) = 4T (n/2) + n, T (1) = 1

b) T(n) = 4T (n/2) + n2 , T (1) = 1

c) T(n) = 4T (n/2) + n3 , T (1) = 1

Solutions

Expert Solution


Related Solutions

- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
Use recursion tree to solve the recurrence: T(n) = T(n/15) + T(n/10) + 2T(n/6) + n^(1/2)
Use recursion tree to solve the recurrence: T(n) = T(n/15) + T(n/10) + 2T(n/6) + n^(1/2)
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0...
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0 t(n) = t(n-1) + n   for n>1 t(1) = 1 t(n) = 3t(n/2) + n    for n>1, n is a power of 2 t(1) = ½ t(n) = 6t(n-1) – 9t(n-2)   for n>1 t(0) = 0 t(1) = 1
Using the backward substitution method, solve the following recurrence relations: a.T(n)= T(n−1)+3forn>1 ,T(1)=0 b.T(n)=3T(n−1) forn>1 ,T(1)=7...
Using the backward substitution method, solve the following recurrence relations: a.T(n)= T(n−1)+3forn>1 ,T(1)=0 b.T(n)=3T(n−1) forn>1 ,T(1)=7 c.T(n)= T(n−1)+n for n>0 ,T(0)=0 d.T(n)= T(n/2)+n for n>1 ,T(1)=1(solve for n=2k) e.T(n)= T(n/3)+1forn>1 ,T(1)=1(solve for n=3k)
Solve the recurrence equation. T(n) = 3T (n/3) + Cn T(1) = C
Solve the recurrence equation. T(n) = 3T (n/3) + Cn T(1) = C
Use the substitution method to prove the solutions for the following recurrences: Recurrence Solution 1 T(n)...
Use the substitution method to prove the solutions for the following recurrences: Recurrence Solution 1 T(n) = T(n-1) + n O(n­2) 2 T(n) = T(n/2) + 1 O(lgn) 3 T(n) = T(n/2) + n ϴ(nlgn) 4 T(n) = 3T(n/2) + n O(nlg(3)). 5 T(n) = 2T(n/2) + n2 O(n­2) 6 T(n) = 4T(n/2 + 2) + n O(n­2) 7 T(n) = 2T(n – 1) + 1 O(2n) 8 T(n) = T(n – 1) + T(n/2) + n O(2n) 9 T(n)...
1. Using domain and range transformations, solve the following recurrence relations: a) T(1) = 1, T(n)...
1. Using domain and range transformations, solve the following recurrence relations: a) T(1) = 1, T(n) = 2T(n/2) + 6n - 1 b) T(1) = 1, T(n) = 3T(n/2) + n^2 - n
What is the recurrence relation for T(n) = (n-1)T(n-1) + n?
What is the recurrence relation for T(n) = (n-1)T(n-1) + n?
Introduction to Algorithms - Analysis of Algorithms Solve the following recurrence relation: T(n) = T(an) +...
Introduction to Algorithms - Analysis of Algorithms Solve the following recurrence relation: T(n) = T(an) + T((1 - a)n) + n
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an =...
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an = an-1 + 6an-2 - 2n+1 with a0 = -4, a1= 5 b) an = an-1 + 6an-2 + 5 x 3n with a0 = 2, a1 = 5 c) an = an-1 + 6an-2 - 36n with a0 = 10, a1= 40
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT