Question

In: Advanced Math

1. Using domain and range transformations, solve the following recurrence relations: a) T(1) = 1, T(n)...

1. Using domain and range transformations, solve the following recurrence relations:

a) T(1) = 1, T(n) = 2T(n/2) + 6n - 1

b) T(1) = 1, T(n) = 3T(n/2) + n^2 - n

Solutions

Expert Solution


Related Solutions

Solve the following recurrence relations. a. x(n) = x(n − 1) + 3 for n >...
Solve the following recurrence relations. a. x(n) = x(n − 1) + 3 for n > 1, x(1) = 0 b. x(n) = 5x(n − 1) for n > 1, x(1) = 6 c. x(n) = x(n/5) + 1 for n > 1, x(1) = 1 (solve for n = 5k )
Using the backward substitution method, solve the following recurrence relations: a.T(n)= T(n−1)+3forn>1 ,T(1)=0 b.T(n)=3T(n−1) forn>1 ,T(1)=7...
Using the backward substitution method, solve the following recurrence relations: a.T(n)= T(n−1)+3forn>1 ,T(1)=0 b.T(n)=3T(n−1) forn>1 ,T(1)=7 c.T(n)= T(n−1)+n for n>0 ,T(0)=0 d.T(n)= T(n/2)+n for n>1 ,T(1)=1(solve for n=2k) e.T(n)= T(n/3)+1forn>1 ,T(1)=1(solve for n=3k)
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
Solve the recurrence equations by Substitution a) T(n) = 4T (n/2) + n, T (1) =...
Solve the recurrence equations by Substitution a) T(n) = 4T (n/2) + n, T (1) = 1 b) T(n) = 4T (n/2) + n2 , T (1) = 1 c) T(n) = 4T (n/2) + n3 , T (1) = 1
Solve the recurrence equation. T(n) = 3T (n/3) + Cn T(1) = C
Solve the recurrence equation. T(n) = 3T (n/3) + Cn T(1) = C
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an =...
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an = an-1 + 6an-2 - 2n+1 with a0 = -4, a1= 5 b) an = an-1 + 6an-2 + 5 x 3n with a0 = 2, a1 = 5 c) an = an-1 + 6an-2 - 36n with a0 = 10, a1= 40
Show for the following recurrence that T(n) = T(n/3) + n*log(n) is O(n*log(n)) (not using the...
Show for the following recurrence that T(n) = T(n/3) + n*log(n) is O(n*log(n)) (not using the Master theorem please)
Give upper and lower bounds for T(n) in the following recurrence: T(n) = 3T(n/4) + n
Give upper and lower bounds for T(n) in the following recurrence: T(n) = 3T(n/4) + n
Use generating functions to solve the following recurrence relation: an = 2an−1 + 3n , n...
Use generating functions to solve the following recurrence relation: an = 2an−1 + 3n , n ≥ 1 a0 = 2
Use Laplace transformations to solve the following ODE for x(t): x¨(t) + 2x(t) = u˙(t) +...
Use Laplace transformations to solve the following ODE for x(t): x¨(t) + 2x(t) = u˙(t) + 3u(t) u(t) = e^−t Initial conditions x(0) = 1, x˙(0) = 0, u(0) = 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT