Question

In: Advanced Math

- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n

- Solve the following recurrence relation :

T(n) = T(αn) + T((1 − α)n) + n

Solutions

Expert Solution

in this case:

we guess


Related Solutions

What is the recurrence relation for T(n) = (n-1)T(n-1) + n?
What is the recurrence relation for T(n) = (n-1)T(n-1) + n?
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0...
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0 t(n) = t(n-1) + n   for n>1 t(1) = 1 t(n) = 3t(n/2) + n    for n>1, n is a power of 2 t(1) = ½ t(n) = 6t(n-1) – 9t(n-2)   for n>1 t(0) = 0 t(1) = 1
Use generating functions to solve the following recurrence relation: an = 2an−1 + 3n , n...
Use generating functions to solve the following recurrence relation: an = 2an−1 + 3n , n ≥ 1 a0 = 2
Solve the recurrence equations by Substitution a) T(n) = 4T (n/2) + n, T (1) =...
Solve the recurrence equations by Substitution a) T(n) = 4T (n/2) + n, T (1) = 1 b) T(n) = 4T (n/2) + n2 , T (1) = 1 c) T(n) = 4T (n/2) + n3 , T (1) = 1
Solve the recurrence equation. T(n) = 3T (n/3) + Cn T(1) = C
Solve the recurrence equation. T(n) = 3T (n/3) + Cn T(1) = C
1. Using domain and range transformations, solve the following recurrence relations: a) T(1) = 1, T(n)...
1. Using domain and range transformations, solve the following recurrence relations: a) T(1) = 1, T(n) = 2T(n/2) + 6n - 1 b) T(1) = 1, T(n) = 3T(n/2) + n^2 - n
Find and solve a recurrence relation for the number of ways to stack n poker
Find and solve a recurrence relation for the number of ways to stack n poker chips using red, white and blue chips such that no two red chips are together. Use your solution to compute the number of ways to stack 15 poker chips.
Use recursion tree to solve the recurrence: T(n) = T(n/15) + T(n/10) + 2T(n/6) + n^(1/2)
Use recursion tree to solve the recurrence: T(n) = T(n/15) + T(n/10) + 2T(n/6) + n^(1/2)
Solve the following recurrence relations. a. x(n) = x(n − 1) + 3 for n >...
Solve the following recurrence relations. a. x(n) = x(n − 1) + 3 for n > 1, x(1) = 0 b. x(n) = 5x(n − 1) for n > 1, x(1) = 6 c. x(n) = x(n/5) + 1 for n > 1, x(1) = 1 (solve for n = 5k )
Solve the following recurrence relation (A) an = 3an-1 + 4an-2 a0 =1, a1 = 1
  Solve the following recurrence relation   (A) an = 3an-1 + 4an-2 a0 =1, a1 = 1   (B) an = 2an-1 - an-2, a0 = 1, a2= 2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT