In: Math
X is a binomial random variable.
n= 100 p= .4
Use the binomial approach and normal approximation to calculate the follwowing: 1. P(x>=38) 2. P(x=45) 3. P(X>45) 4. P(x <45)
Solution:
Given that,
P = 0.4
1 - P = 0.6
n = 100
Here,
BIN ( n , P ) that is , BIN (100 , 0.4)
then,
n*p = 100 * 0.4 = 40 > 5
n(1- P) = 100 * 0.6 = 60 > 5
According to normal approximation binomial,
X
Normal
Mean =
= n*P = 40
Standard deviation =
=
n*p*(1-p)
=
100 * 0.4 * 0.6=
24
We using continuity correction factor
1)
P(X
a ) = P(X > a - 0.5)
P(x > 37.5) = 1 - P(x < 37.5)
= 1 - P((x -
) /
< (37.5 - 40) /
24)
= 1 - P(z < -0.51)
= 1 - 0.3050
= 0.6950
Probability = 0.6950
2)
P(X = a) = P( a - 0.5 < X < a + 0.5)
P(44.5 < x < 45.5) = P((44.5 - 40)/
24) < (x -
) /
<
(45.5 - 40) /
24) )
= P(0.92 < z < 1.12)
= P(z < 1.12) - P(z < 0.92)
= 0.8686 - 0.8212
Probability = 0.0474
3)
P(x > a ) = P( X > a + 0.5)
P(x > 45.5) = 1 - P(x < 45.5)
= 1 - P((x -
) /
< (45.5 - 40) /
24)
= 1 - P(z < 1.12)
= 1 - 0.8686
= 0.1314
Probability = 0.1314
4)
P(X < a ) = P(X < a - 0.5)
P(x < 44.5) = P((x -
) /
< (44.5 - 40 ) /
24)
= P(z < 0.92)
Probability = 0.8212