Question

In: Statistics and Probability

Given a binomial random variable with n​ = 100 and p​ = .5​, estimate the​ Pr[X...

Given a binomial random variable with n​ = 100 and p​ = .5​, estimate the​ Pr[X ≥ 40​]

Solutions

Expert Solution

Solution:

Given that,

P = 0.5

1 - P = 0.5

n = 100

Here, BIN ( n , P ) that is , BIN (100 , 0.5)

then,

n*p = 100*0.5 = 50 > 5

n(1- P) = 100*0.5 = 50 > 5

According to normal approximation binomial,

X Normal

Mean = = n*P = 100*0.5 = 50

Standard deviation = =n*p*(1-p) = 100*0.5*0.5 = 25 = 5

We using countinuity correction factor

P(X a ) = P(X > a - 0.5)

P(x > 39.5) = 1 - P(x < 39.5)

= 1 - P((x - ) / < (39.5 - 50 ) / 5)

= 1 - P(z < -2.1)

= 1 - 0.0179   

= 0.9821

Probability = 0.9821


Related Solutions

Suppose that x is a binomial random variable with n = 5, p = .66, and...
Suppose that x is a binomial random variable with n = 5, p = .66, and q = .34. (b) For each value of x, calculate p(x). (Round final answers to 4 decimal places.) p(0) = p(1)= p(2)= p(3)= p(4)= p(5) (c) Find P(x = 3). (Round final answer to 4 decimal places.) (d) Find P(x ≤ 3). (Do not round intermediate calculations. Round final answer to 4 decimal places.) (e) Find P(x < 3). (Do not round intermediate calculations....
Let X be a binomial random variable with parameters n = 5 and p = 0.6....
Let X be a binomial random variable with parameters n = 5 and p = 0.6. a) What is P(X ≥ 1)? b) What is the mean of X? c) What is the standard deviation of X? (Show work)
If x is a binomial random variable, compute P(x) for each of the following cases: (a)  P(x≤5),n=9,p=0.7P(x≤5),n=9,p=0.7...
If x is a binomial random variable, compute P(x) for each of the following cases: (a)  P(x≤5),n=9,p=0.7P(x≤5),n=9,p=0.7 (b)  P(x>1),n=9,p=0.1P(x>1),n=9,p=0.1 (c)  P(x<3),n=5,p=0.6P(x<3),n=5,p=0.6 (d)  P(x≥1),n=6,p=0.9P(x≥1),n=6,p=0.9
X1 is a binomial random variable with n = 100 and p = 0.8, while X2...
X1 is a binomial random variable with n = 100 and p = 0.8, while X2 is a binomial random variable with n = 100 and p = 0.2. The variables are independent. The profit measure is given by P = X1 / X2. Run N = 10 simulations of X1 and X2 to simulate the distribution of P, and then find both the variance and the semi-variance.
The p.d.f of the binomial distribution random variable X with parameters n and p is f(x)...
The p.d.f of the binomial distribution random variable X with parameters n and p is f(x) = n x p x (1 − p) n−x x = 0, 1, 2, ..., n 0 Otherwise Show that a) Pn x=0 f(x) = 1 [10 Marks] b) the MGF of X is given by [(1 − p) + pet ] n . Hence or otherwise show that E[X]=np and var(X)=np(1-p).
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. (a) What are the possible values for (X, Y ) pairs. (b) Derive the joint probability distribution function for X and Y. Make sure to explain your steps. (c) Using the joint pdf function of X and Y, form...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. What are the possible values for (X, Y ) pairs. Derive the joint probability distribution function for X and Y. Make sure to explain your steps. Using the joint pdf function of X and Y, form the summation /integration...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. What are the possible values for (X, Y ) pairs. Derive the joint probability distribution function for X and Y. Make sure to explain your steps. Using the joint pdf function of X and Y, form the summation /integration...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X =...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X = 4) P(X < 5) P(X ≥ 4)
Suppose x is a binomial random variable with p = .4 and n = 25. c....
Suppose x is a binomial random variable with p = .4 and n = 25. c. Use the binomial probabilities table or statistical software to find the exact value of P(x>=9). Answ:.726 back of book d. Use the normal approximation to find P(x>=9). answ:.7291 the back of book For one I have no idea how to use the binomial probabilities table . The mean is 10, variance is 6 and std is 2.45 If possible could someone explain how to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT