In: Statistics and Probability
Assume that x is a binominal random variable with n=100 and p=0.40. Use a normal approximation to find the following:
a) P(x≥38) b) P(x=45) c) P(x>45) d) P(x<45)
Solution:
Given that,
P = 0.40
1 - P = 0.60
n = 100
Here, BIN ( n , P ) that is , BIN (100 , 0.40)
then,
n*p = 100*0.40 = 40 > 5
n(1- P) = 100*0.60 = 60 > 5
According to normal approximation binomial,
X Normal
Mean = = n*P = 40
Standard deviation = =n*p*(1-p) = 100*0.40*0.60 = 24
We using countinuity correction factor
a)
P(X a ) = P(X > a - 0.5)
P(x > 37.5) = 1 - P(x < 37.5)
= 1 - P((x - ) / < (37.5 - 40) / 24)
= 1 - P(z < -0.510)
= 1 - 0.3050
= 0.6950
Probability = 0.6950
b)
P(X = a) = P( a - 0.5 < X < a + 0.5)
P(44.5 < x < 45.5) = P((44.5 - 40)/ 24) < (x - ) / < (45.5 - 40) / 24) )
= P(0.919 < z < 1.123)
= P(z < 1.123) - P(z < 0.919)
= 0.8693 - 0.8210
= 0.0483
Probability = 0.0483
c)
P(x > a ) = P( X > a + 0.5)
P(x > 45.5) = 1 - P(x <45.5 )
= 1 - P((x - ) / < (45.5-40) / 24)
= 1 - P(z < 1.123)
= 1 - 0.8693
= 0.1307
Probability = 0.1307
d)
P(X < a ) = P(X < a - 0.5)
P(x <44.5 ) = P((44.5 - 40)/ 24) )
= P(z < 0.919)
= 0.8210
Probability = 0.8210