Question

In: Statistics and Probability

The p.d.f of the binomial distribution random variable X with parameters n and p is f(x)...

The p.d.f of the binomial distribution random variable X with parameters
n and p is

f(x) =
n
x

p
x
(1 − p)
n−x x = 0, 1, 2, ..., n
0 Otherwise

Show that
a) Pn
x=0 f(x) = 1 [10 Marks]
b) the MGF of X is given by [(1 − p) + pet
]
n
. Hence or otherwise show
that E[X]=np and var(X)=np(1-p).

Solutions

Expert Solution


Related Solutions

A random variable Y whose distribution is binomial with parameters are n = 500 and p=...
A random variable Y whose distribution is binomial with parameters are n = 500 and p= 0.400, and here Y suggests the number of desired outcomes of the random experiment and n-Y is the number of undesired outcomes obtained from a random experiment of n independent trials. On this random experiment   p̂ sample proportion is found as Y/n. (Round your answers to 3 decimal places in all parts.) a)What is the expected value of this statistic? b)Between what limits will...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. (a) What are the possible values for (X, Y ) pairs. (b) Derive the joint probability distribution function for X and Y. Make sure to explain your steps. (c) Using the joint pdf function of X and Y, form...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. What are the possible values for (X, Y ) pairs. Derive the joint probability distribution function for X and Y. Make sure to explain your steps. Using the joint pdf function of X and Y, form the summation /integration...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. What are the possible values for (X, Y ) pairs. Derive the joint probability distribution function for X and Y. Make sure to explain your steps. Using the joint pdf function of X and Y, form the summation /integration...
Let X be a binomial random variable with parameters n = 5 and p = 0.6....
Let X be a binomial random variable with parameters n = 5 and p = 0.6. a) What is P(X ≥ 1)? b) What is the mean of X? c) What is the standard deviation of X? (Show work)
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a...
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a binomial random variable with parameters (m, p). What is the pdf of the random variable Z=X+Y? (b) Let X and Y be indpenednet random variables. Let Z=X+Y. What is the moment generating function for Z in terms of those for X and Y? Confirm your answer to the previous problem (a) via moment generating functions.
A binomial random variable with parameters n and p represents the number of successes in n...
A binomial random variable with parameters n and p represents the number of successes in n independent trials. We can obtain a binomial random variable by generating n uniform random numbers 1 2 n U ,U ,...,U and letting X be the number of i U that are less than or equal to p. (a) Write a MATLAB function to implement this algorithm and name the function gsbinrnd. You may use the for loop to generate random numbers. (b) Use...
Suppose that X is a binomial random variable with parameters n=20 and p=0.7. Choose a wrong...
Suppose that X is a binomial random variable with parameters n=20 and p=0.7. Choose a wrong statement about the random variable X. a. The maximum possible value of X is 20. b. The minimum possible value of X is 0. c. The variance of X is 4.2. d. The expected value of X is 14. e. Pr(X = 19)+ Pr(X = 1)= 1
Let x be a random variable that possesses a binomial distribution with p=0.5 and n=9. Using...
Let x be a random variable that possesses a binomial distribution with p=0.5 and n=9. Using the binomial formula or tables, calculate the following probabilities. Also calculate the mean and standard deviation of the distribution. Round solutions to four decimal places, if necessary. P(x≥3)= P(x≤8)= P(x=5)= μ= σ=
Suppose that x is a binomial random variable with n = 5, p = .66, and...
Suppose that x is a binomial random variable with n = 5, p = .66, and q = .34. (b) For each value of x, calculate p(x). (Round final answers to 4 decimal places.) p(0) = p(1)= p(2)= p(3)= p(4)= p(5) (c) Find P(x = 3). (Round final answer to 4 decimal places.) (d) Find P(x ≤ 3). (Do not round intermediate calculations. Round final answer to 4 decimal places.) (e) Find P(x < 3). (Do not round intermediate calculations....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT