Question

In: Statistics and Probability

X1 is a binomial random variable with n = 100 and p = 0.8, while X2...

X1 is a binomial random variable with n = 100 and p = 0.8, while X2 is a binomial random variable with n = 100 and p = 0.2. The variables are independent. The profit measure is given by P = X1 / X2. Run N = 10 simulations of X1 and X2 to simulate the distribution of P, and then find both the variance and the semi-variance.

Solutions

Expert Solution

Given X1 and X2 are binomial random variable with n1 = 100, p1 = 0.8 and n2 = 100, p2 = 0.2 respectively.

Using R to simulate the distribution of P = X1/X2.

Creating variables in R as follows:

n1 = 100; p1 = 0.8
n2 = 100; p2 = 0.2

Simulating 10 values of both X1 and X2 using rbinom() function:

x1 <- rbinom(10, 100, 0.8) ; x1
[1] 78 84 78 81 80 74 80 84 73 79

x2 <- rbinom(10, 100, 0.2) ; x2
[1] 16 13 19 15 17 19 20 17 27 16

Calculating values of P:

P = x1/x2 ; P
[1] 4.875000 6.461538 4.105263 5.400000 4.705882 3.894737 4.000000
[8] 4.941176 2.703704 4.937500

Calculating variance of P using var() function:

var(P)
[1] 1.01339

Now to calculate semi-variance we use the formula:

Where:

n = the total number of observations below the mean

rt = the observed value (observations below mean)

Average = the mean of the dataset

First we calculate the mean using mean() function in R:

mean(P)
[1] 4.60248

Then we calculate rt as follows:
rt = P[P < mean(P)] ; rt
[1] 4.105263 3.894737 4.000000 2.703704

Calculating n (the total number of observations below the mean):

n = length(rt) ; n
[1] 4

Finally calculating semivariance:

semi_var = sum((mean(P) - rt)^2)/n
semi_var
[1] 1.179115

(The R code is in bold)


Related Solutions

Given a binomial random variable with n​ = 100 and p​ = .5​, estimate the​ Pr[X...
Given a binomial random variable with n​ = 100 and p​ = .5​, estimate the​ Pr[X ≥ 40​]
A binomial random variable with parameters n and p represents the number of successes in n...
A binomial random variable with parameters n and p represents the number of successes in n independent trials. We can obtain a binomial random variable by generating n uniform random numbers 1 2 n U ,U ,...,U and letting X be the number of i U that are less than or equal to p. (a) Write a MATLAB function to implement this algorithm and name the function gsbinrnd. You may use the for loop to generate random numbers. (b) Use...
Suppose that x is a binomial random variable with n = 5, p = .66, and...
Suppose that x is a binomial random variable with n = 5, p = .66, and q = .34. (b) For each value of x, calculate p(x). (Round final answers to 4 decimal places.) p(0) = p(1)= p(2)= p(3)= p(4)= p(5) (c) Find P(x = 3). (Round final answer to 4 decimal places.) (d) Find P(x ≤ 3). (Do not round intermediate calculations. Round final answer to 4 decimal places.) (e) Find P(x < 3). (Do not round intermediate calculations....
Let N be a binomial random variable with n = 2 trials and success probability p...
Let N be a binomial random variable with n = 2 trials and success probability p = 0.5. Let X and Y be uniform random variables on [0, 1] and that X, Y, N are mutually independent. Find the probability density function for Z = NXY . Hint: Find P(Z ≤ z) for z ∈ [0, 1] by conditioning on the value of N ∈ {0, 1, 2}.
Consider independent random variables X1, X2, and X3 such that X1 is a random variable having...
Consider independent random variables X1, X2, and X3 such that X1 is a random variable having mean 1 and variance 1, X2 is a random variable having mean 2 and variance 4, and X3 is a random variable having mean 3 and variance 9. (a) Give the value of the variance of X1 + (1/2)X2 + (1/3)X3 (b) Give the value of the correlation of Y = X1- X2 and Z = X2 + X3.
A random variable Y whose distribution is binomial with parameters are n = 500 and p=...
A random variable Y whose distribution is binomial with parameters are n = 500 and p= 0.400, and here Y suggests the number of desired outcomes of the random experiment and n-Y is the number of undesired outcomes obtained from a random experiment of n independent trials. On this random experiment   p̂ sample proportion is found as Y/n. (Round your answers to 3 decimal places in all parts.) a)What is the expected value of this statistic? b)Between what limits will...
14) You have a binomial random variable, B , with n = 120 and p =...
14) You have a binomial random variable, B , with n = 120 and p = .44. Estimate P( 50 < B < 57 ). 15) Tigers have weights that are N(500, 20 ). ( pounds ) You win 2 tigers. Find the probability that your tigers have an average weight that is more that 510 pounds .
Suppose x is a binomial random variable with p = .4 and n = 25. c....
Suppose x is a binomial random variable with p = .4 and n = 25. c. Use the binomial probabilities table or statistical software to find the exact value of P(x>=9). Answ:.726 back of book d. Use the normal approximation to find P(x>=9). answ:.7291 the back of book For one I have no idea how to use the binomial probabilities table . The mean is 10, variance is 6 and std is 2.45 If possible could someone explain how to...
Let X be a binomial random variable with parameters n = 5 and p = 0.6....
Let X be a binomial random variable with parameters n = 5 and p = 0.6. a) What is P(X ≥ 1)? b) What is the mean of X? c) What is the standard deviation of X? (Show work)
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a...
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a binomial random variable with parameters (m, p). What is the pdf of the random variable Z=X+Y? (b) Let X and Y be indpenednet random variables. Let Z=X+Y. What is the moment generating function for Z in terms of those for X and Y? Confirm your answer to the previous problem (a) via moment generating functions.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT