In: Statistics and Probability
1. Assume that X and Y are two independent discrete random variables and that X~N(0,1) and Y~N(µ,σ2).
a. Derive E(X3) and deduce that E[((Y-µ)/σ)3] = 0
b. Derive P(X > 1.65). With µ = 0.5 and σ2 = 4.0, find z such that P(((Y-µ)/σ) ≤ z) = 0.95. Does z depend on µ and/or σ? Why
Solution
Back-up Theory
If a random variable X ~ N(µ, σ2), i.e., X has Normal Distribution with mean µ and variance σ2,
then, Z = (X - µ)/σ ~ N(0, 1), i.e., Standard Normal Distribution .................................................................................... (1)
and hence
P(X ≤ or ≥ t) = P[{(X - µ)/σ} ≤ or ≥ {(t - µ)/σ}] = P[Z ≤ or ≥ {(t - µ)/σ}] .……….................................................………...…(1a)
Probability values for the Standard Normal Variable, Z, can be directly read off from Standard Normal Tables............ (2a)
or can be found using Excel Function: Statistical, NORMSDIST(z) which gives P(Z ≤ z) ..........................................…(2b)
Percentage points of N(0, 1) can be found using Excel Function: Statistical, NORMSINV,
which gives values of t for which P(Z ≤ t) = given probability………………. …........................................................……(2c)
Skewness, α = [{E(X – µ)3}/σ3] .......................................................................................................................................(3)
Skewness for Normal distribution and for any symmetric distribution is zero ................................................................ (4)
Now to work out the solution,
Part (a)
Sub-part (i)
Given, X ~ N(0, 1), vide (3) and (4),
α = [{E(X – 0)3}/13] = 0
i.e., E(X3) = 0 Answer 1
Sub-part (ii)
Given, Y ~N(µ,σ2), vide (1),
(Y-µ)/σ) ~ N(0, 1)
The above along-with Answer 1 =>
E[((Y-µ)/σ)3]
= 0 Answer 2
Part (b)
Sub-part (i)
Given, X ~ N(0, 1), vide (2b),
P(X > 1.66)
= 0.0485 Answer 3
Sub-part (ii)
Given, Y~N(µ,σ2), vide (1),
(Y-µ)/σ) ~ N(0, 1)
Hence, vide (2c),
P[{(Y-µ)/σ)} ≤ z)] = 0.95
=> z = 1.645
Answer 4
Sub-part (iii)
Given, Y~N(µ,σ2), vide (1),
(Y-µ)/σ) ~ N(0, 1)
Hence, whatever be the value of µ and σ, the value of z does not change. Answer 5
DONE