Question

In: Statistics and Probability

let x and y be independent uniform random variables over (0,1). find and sketch the pdf...

let x and y be independent uniform random variables over (0,1). find and sketch the pdf of Z=XY.

Solutions

Expert Solution

ANSWER::

Let X and Y are two uniform random variate over ( 0 , 1)

Therefore, the pdf of X and Y is given by,

f (x) = 1 : 0<x<1

      = 0   : Otherwise

Simillarly,

f (y) = 1 ; 0<y<1

       = 0 ; Oherwise

Since , X and Y are independent.

Therefore, the joint pdf of X and Y is given by

f (x,y) = f (x) f (y)

         = 1 ; 0<x<1 , 0<y<1

Let U = XY And V = X

Implies that X = V and Y = U/X = U/V

Therefore , the Jacobian J is diven by

J = - (1 / v)

Let x = 0 then v = 0 and x = 1 yhen v = 1

Also, y = 0 then u = 0 and y = 1 then u = v

Therefore, the new range of u and v are

0<u<v and 0<v<1

That is   

Therefore , the joint pdf of U and V are

               

                

Therefore we want to find the pdf of U=XY

Hence , to ind the marginal pdf of U

Thereore,

            

                       

                       

                      

                      

Hence , the pdf of U=XY is

                     

                                 

NOTE:: I HOPE YOUR HAPPY WITH MY ANSWER....***PLEASE SUPPORT ME WITH YOUR RATING...

***PLEASE GIVE ME "LIKE"...ITS VERY IMPORTANT FOR ME NOW....PLEASE SUPPORT ME ....THANK YOU


Related Solutions

Let X,,X, and X, be independent uniform random variables on [0,1] Write Y = X, +X,...
Let X,,X, and X, be independent uniform random variables on [0,1] Write Y = X, +X, and Z = X+ X. a.) Compute E[X,X,X,. (5 points) b.) Compute Var(X). (5 points) c.) Compute and draw a graph of the density function fr. (15 points)
Let ? and ? be two independent uniform random variables such that ?∼????(0,1) and ?∼????(0,1). A)...
Let ? and ? be two independent uniform random variables such that ?∼????(0,1) and ?∼????(0,1). A) Using the convolution formula, find the pdf ??(?) of the random variable ?=?+?, and graph it. B) What is the moment generating function of ??
Suppose A and B are independent uniform random variables on [0,1]. What is the joint PDF...
Suppose A and B are independent uniform random variables on [0,1]. What is the joint PDF of (R,S)? Prove that R and S are are independent standard normal random variables. R = sqrt(-2logA)*cos(2piB) S = sqrt(-2logA)*sin(2piB)
Suppose A and B are independent uniform random variables on [0,1]. What is the joint PDF...
Suppose A and B are independent uniform random variables on [0,1]. What is the joint PDF of (R,S)? Prove that R and S are are independent standard normal random variables. R = sqrt(-2logA)*cos(2piB) S = sqrt(-2logA)*sin(2piB)
Let X, Y be independent random variables with X ∼ Uniform([1, 5]) and Y ∼ Uniform([2,...
Let X, Y be independent random variables with X ∼ Uniform([1, 5]) and Y ∼ Uniform([2, 4]). a) FindP(X<Y). b) FindP(X<Y|Y>3) c) FindP(√Y<X<Y).
Let X and Y be independent Gaussian(0,1) random variables. Define the random variables R and Θ,...
Let X and Y be independent Gaussian(0,1) random variables. Define the random variables R and Θ, by R2=X2+Y2,Θ = tan−1(Y/X).You can think of X and Y as the real and the imaginary part of a signal. Similarly, R2 is its power, Θ is the phase, and R is the magnitude of that signal. (b) Find the probability density functions of R and Θ. Are R and Θ independent random variables?
Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1)....
Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1). (a) Find the cumulative distribution function of X/Y. (b) Find the cumulative distribution function of XY. (c) Find the mean and variance of XY/Z.
Let X and Y be independent Exponential random variables with common mean 1. Their joint pdf...
Let X and Y be independent Exponential random variables with common mean 1. Their joint pdf is f(x,y) = exp (-x-y) for x > 0 and y > 0 , f(x, y ) = 0 otherwise. (See "Independence" on page 349) Let U = min(X, Y) and V = max (X, Y). The joint pdf of U and V is f(u, v) = 2 exp (-u-v) for 0 < u < v < infinity, f(u, v ) = 0 otherwise....
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. (...
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. ( a) Compute the cdf of Y := min(X1, . . . , Xn). (b) Use (a) to compute the pdf of Y . (c) Find E(Y ).
Let X and Y be uniform random variables on [0, 1]. If X and Y are...
Let X and Y be uniform random variables on [0, 1]. If X and Y are independent, find the probability distribution function of X + Y
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT