Question

In: Statistics and Probability

Let X and Y be independent Gaussian(0,1) random variables. Define the random variables R and Θ,...

Let X and Y be independent Gaussian(0,1) random variables. Define the random variables R and Θ, by R2=X2+Y2,Θ = tan−1(Y/X).You can think of X and Y as the real and the imaginary part of a signal. Similarly, R2 is its power, Θ is the phase, and R is the magnitude of that signal.

(b) Find the probability density functions of R and Θ. Are R and Θ independent random variables?

Solutions

Expert Solution

TOPIC:Transformation of random variables.


Related Solutions

Let X,,X, and X, be independent uniform random variables on [0,1] Write Y = X, +X,...
Let X,,X, and X, be independent uniform random variables on [0,1] Write Y = X, +X, and Z = X+ X. a.) Compute E[X,X,X,. (5 points) b.) Compute Var(X). (5 points) c.) Compute and draw a graph of the density function fr. (15 points)
let x and y be independent uniform random variables over (0,1). find and sketch the pdf...
let x and y be independent uniform random variables over (0,1). find and sketch the pdf of Z=XY.
Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1)....
Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1). (a) Find the cumulative distribution function of X/Y. (b) Find the cumulative distribution function of XY. (c) Find the mean and variance of XY/Z.
Let X and Y be two independent random variables. Assume that X is Negative- Binomial(2, θ)...
Let X and Y be two independent random variables. Assume that X is Negative- Binomial(2, θ) and Y is Negative-Binomial(3, θ) distributed. Let Z be another random variable, Z = X + Y . (a) Find the following probabilities: P(Z = 0), P(Z = 1) and P(Z = 2); (b) Can you guess what is the distribution of Z?
Let ? and ? be two independent uniform random variables such that ?∼????(0,1) and ?∼????(0,1). A)...
Let ? and ? be two independent uniform random variables such that ?∼????(0,1) and ?∼????(0,1). A) Using the convolution formula, find the pdf ??(?) of the random variable ?=?+?, and graph it. B) What is the moment generating function of ??
Let X and Y be two independent random variables, and g : R2 --> R an...
Let X and Y be two independent random variables, and g : R2 --> R an arbitrary bivariate function. 1) Suppose that X and Y are continuous with densities fX and fY . Prove that for any y ? R withfY (y) > 0, the conditional density of the random variable Z = g(X, Y ) given Y = y is the same as the density of the random variable W = g(X, y). 2) Suppose that X and Y...
Let X and Y be two independent random variables such that X + Y has the...
Let X and Y be two independent random variables such that X + Y has the same density as X. What is Y?
1. Assume that X and Y are two independent discrete random variables and that X~N(0,1) and...
1. Assume that X and Y are two independent discrete random variables and that X~N(0,1) and Y~N(µ,σ2).                 a. Derive E(X3) and deduce that E[((Y-µ)/σ)3] = 0                 b. Derive P(X > 1.65). With µ = 0.5 and σ2 = 4.0, find z such that P(((Y-µ)/σ) ≤ z) = 0.95. Does z depend on µ and/or σ? Why
Suppose X, Y, and Z are independent Gaussian random variables with σx = 0.2, σy =...
Suppose X, Y, and Z are independent Gaussian random variables with σx = 0.2, σy = 0.3, σz = 1, μx=3.0, μy=7.7, and μz = 0 Determine the following: (a) The joint PDF of X, Y, and Z (b) Pr( (7.6<Y<7.8) | (X<3, Z<0) c) The Correlation matrix and covariance matrix of X, Y, and Z
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to...
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to be the smallest k such that X1+X2+⋯+Xn exceeds cn=n2+12n−−√, namely, Nn = min{k≥1:X1+X2+⋯+Xk>ck} Does the limit limn→∞P(Nn>n) exist? If yes, enter its numerical value. If not, enter −999. unanswered Submit You have used 1 of 3 attempts Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT