Question

In: Physics

Suppose that an electron with spin up emits a photon in the field of an ion...

Suppose that an electron with spin up emits a photon in the field of an ion (bremsstrahlung). What is the spin of the emitted photon? Is it correct to say that the photon is circularly polarized if the spin of the electron flips down and linearly polarised if it remains up?

Solutions

Expert Solution

Spin of the photon is always 1 as it is a spin 1 particle. If you are asking about projection of spin into some direction in the center of mass reference frame then this has no meaning (because photon is massless). Instead, one needs to project into the direction of motion (by forming a scalar product of the spin operator with momentum) and this is called helicity.

Now, by conservation of angular momentum it must always be the case that the electron's spin flips in the first order (because 1/2=?1/2+1 is the only possible solution) and that means the photon is circularly polarized. In the second order, it could stay the same if you emitted two photons with opposite helicities one after the other.

So, you can actually measure the projection of the spin of the electron by measuring the polarization of the photon (which should be circular). If this experiment is however done over the sample which has electrons in both states, then one needs to average over that and you obtain (circularly) unpolarized photons.


Related Solutions

An electron in the n = 5 level of an H atom emits a photon of...
An electron in the n = 5 level of an H atom emits a photon of wavelength 4052.28 nm. To what energy level does the electron move?
Which of the following electron jumps in a hydrogen atom emits the photon of highest frequency?...
Which of the following electron jumps in a hydrogen atom emits the photon of highest frequency? a) n=2 to n=3 b) n=1 to n=2 3) n=3 to n=2 4) n=2 to n=1
After a certain H atom emits a 3740 nm photon, the energy of its electron is...
After a certain H atom emits a 3740 nm photon, the energy of its electron is -8.716 x 10-20 J. What was the electron's energy before photon emission, and what level did it occupy?
Suppose a photon excites an electron such that the electron is removed from a bonding orbital...
Suppose a photon excites an electron such that the electron is removed from a bonding orbital and placed in an antibonding orbital. How does the bond order change for this molecule? Select one: a. increases by 0.5 b. increases by 1.0 c. decreases by 0.5 d. decreases by 1.0
What are forces felt by an ion in an electric field, an electron in a wire...
What are forces felt by an ion in an electric field, an electron in a wire carrying current, and a magnet (and its component parts) in a magnetic field and why are these forces important.
A hydrogen atom emits a photon when its electron falls from its 3rd excited state (?=4)...
A hydrogen atom emits a photon when its electron falls from its 3rd excited state (?=4) to its first excited state (?=2). Another electron in a box with sides of infinite potential absorbs the photon and jumps from the ground state (?=1) to the 5th excited state (?=6). a. [2] What is the wavelength of the emitted photon? (Calculate this, don’t just look it up) b. [3] What is the length of the box? c. [3] Using the fact that...
Suppose a photon is absorbed by the electron in a hydrogen atom in an n= 2...
Suppose a photon is absorbed by the electron in a hydrogen atom in an n= 2 state. What wavelength should the photon have to enable the electron to transition to the n= 4 state? Once the photon is absorbed, what are the various wavelengths of photons that could be emitted by the atom? (Use Bohr approximation).
a. A relatively rare transition of the hydrogen atom emits a radio photon with with ?...
a. A relatively rare transition of the hydrogen atom emits a radio photon with with ? = 21 cm. This emission line is extremely important to astronomers for two main reasons: it cuts through most gas and dust without being absorbed and, although transition is rare, there is so much hydrogen in space that the 21 cm photons are themselves quite common. Suppose that one such photon from a distant galaxy is measured to have a wavelength of just 11...
Consider a photon that scatters off an electron. In the case of an electron which is...
Consider a photon that scatters off an electron. In the case of an electron which is not at rest, but rather which has a kinetic energy, E_e much larger than the photon energy. Find an expression for the photon energy after the interaction. To do this most simply, make a frame transformation to a frame where the electron is at rest, calculate the scattering , and then transform back to the original reference frame. For this problem, you may wish...
In a photon-electron collision by Compton effect, the photon diffused has an energy of 120 KeV...
In a photon-electron collision by Compton effect, the photon diffused has an energy of 120 KeV as the electron recedes with a kinetic energy of 40 Kev. a) Find the wavelength of the photon incident. b) Find the scattering angle of the photon c) Find the scattering angle of the electron.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT