Question

In: Math

Problem 4: House Prices Use the “Fairfax City Home Sales” dataset for parts of this problem....

Problem 4: House Prices

Use the “Fairfax City Home Sales” dataset for parts of this problem.

a) Use StatCrunch to construct an appropriately titled and labeled relative frequency histogram of Fairfax home closing prices stored in the “Price” variable. Copy your histogram into your document.

b) What is the shape of this distribution? Answer this question in one complete sentence.

c) Assuming the population has a similar shape as the sample with population mean $510,000 and population standard deviation $145,000; calculate the probability that in a random sample of size 10, the mean of the sample will be greater than $600,000. You may assume a random sample was taken and the sample came from a big population. However, be sure to check the central limit theorem condition of a large sample size before completing this problem using one complete sentence. If this condition is not met, you cannot complete the problem.

d) Assuming the population has a similar shape as the sample with population mean $510,000 and population standard deviation $145,000; calculate the probability that in a random sample of size 36, the mean of the sample will be greater than $600,000. You may assume a random sample was taken and the sample came from a big population. However, be sure to check the central limit theorem condition of a large sample size before completing this problem using one complete sentence. If this condition is not met, you cannot complete the problem.

Data:

Price Year, Days, TLArea, Acres

369900   1922   44   1870   0.39

373000   1952   0   1242   0.27

375000   1952   8   932   0.15

375000   1950   2   768   0.19

379000   1952   31   816   0.21

380000   1941   53   1092   0.19

385000   1951   5   984   0.27

387700   1953   5   975   0.36

395000   1954   18   957   0.29

395000   1951   12   1105   0.22

399900   1954   29   1206   0.28

399900   1951   6   1226   0.18

400000   1954   31   957   0.27

410000   1949   6   1440   0.2

410000   1954   17   1344   0.23

412500   1954   4   1008   0.25

415000   1953   17   1371   0.28

420000   1954   2   957   0.25

426000   1952   3   1694   0.25

430000   1953   19   975   0.23

434900   1950   5   1128   0.18

435000   1954   32   1252   0.24

440000   1960   3   1161   0.26

440000   1954   2   1036   0.28

440000   1955   12   1645   0.28

440000   1960   5   1746   0.31

441000   1952   133   1062   0.23

442000   1961   4   1414   0.32

443000   1951   26   962   0.2

444900   1955   4   1122   0.19

446500   1953   3   962   0.26

450000   1952   2   1488   0.15

450000   1955   49   1122   0.23

450000   1979   0   1092   0.28

450000   1951   70   962   0.2

450000   1957   23   1300   0.51

451000   1947   12   1325   0.34

455000   1952   7   2267   0.81

455000   1962   4   1050   0.31

460000   1955   5   997   0.3

460000   1954   10   1125   0.17

465000   1954   77   1288   0.46

465900   1947   21   1309   0.19

469000   1963   153   1149   0.27

474000   1959   5   1319   0.32

475000   1955   4   1530   0.28

475000   1953   29   1008   0.2

475000   1955   6   1530   0.28

475000   1956   116   1345   0.5

475000   1956   1   1530   0.28

480000   1960   27   1236   0.27

480000   1959   133   1527   0.24

485000   1955   4   1008   0.24

485000   1956   74   977   0.24

488000   1960   11   1972   0.33

500000   1963   0   2145   0.25

500000   1953   14   1758   0.54

500500   1955   6   1630   0.28

510000   1959   5   1680   0.34

512000   1963   0   1968   0.22

519000   1961   1   1312   0.29

520000   1954   15   1492   0.25

520000   1958   80   1443   0.33

520000   1963   122   1822   0.32

530000   1962   6   1393   0.29

540000   1962   12   1414   0.25

543600   1962   4   1414   0.24

560000   1967   5   1530   0.28

560000   1961   16   1438   0.53

565000   1947   6   1510   0.25

565500   1967   5   1217   0.26

589000   1954   32   2368   0.3

593000   1954   9   2044   0.25

610000   1978   140   2091   0.09

655000   1976   180   2728   0.24

660000   1947   10   2635   0.22

665000   1950   37   2645   0.57

685000   1982   120   2752   0.09

795000   2002   259   3402   0.12

852000   2000   4   3215   0.11

895000   2000   63   3230   0.11

930000   2015   135   3175   0.15

940000   1860   42   3038   0.57

968500   1850   74   3630   0.34

1100000   2004   161   3640   0.19

Solutions

Expert Solution

(a) The Histogram is obtained as:

> price = c(369900, 373000, 375000, 375000, 379000, 380000, 385000, 387700, 395000, 395000, 399900, 399900, 400000, 410000, 410000, 412500, 415000, 420000, 426000, 430000, 434900, 435000, 440000, 440000, 440000, 440000, 441000, 442000, 443000, 444900, 446500, 450000, 450000, 450000, 450000, 450000, 451000, 455000, 455000, 460000, 460000, 465000, 465900, 469000, 474000, 475000, 475000, 475000, 475000, 475000, 480000, 480000, 485000, 485000, 488000, 500000, 500000, 500500, 510000, 512000, 519000, 520000, 520000, 520000, 530000, 540000, 543600, 560000, 560000, 565000, 565500, 589000, 593000, 610000, 655000, 660000, 665000, 685000, 795000, 852000, 895000, 930000, 940000, 968500, 1100000)

> hist(price, breaks = 10, main="Fairfax Home Closing Prices", xaxt='n')

> axis(side=1, at=seq(350000,1500000, 100000), labels=seq(350000,1500000, 100000))

(b) The Histogram is skewed (Non-Normal) to the right, which the tail is on the right side.

(c) We are to obtain:

where is the sample mean.

Thus, the probability that in a random sample of size 10, the mean of the sample will be greater than $600,000 is obtained as 0.02483511.

(d) We are to obtain:

where is the sample mean.

Thus, the probability that in a random sample of size 36, the mean of the sample will be greater than $600,000 is obtained as 0.06602641.


Related Solutions

The dataset for this assignment contains house prices as well as 19 other features for each...
The dataset for this assignment contains house prices as well as 19 other features for each property. Those features are detailed below and include information about the house (number of bedrooms, bathrooms…), the lot (square footage…) and the sale conditions (period of the year…) The overall goal of the assignment is to predict the sale price of a house by using a linear regression. For this assignment, the training set is in the file "house_prices_train.csv" and the test set is...
Let X be the population of house prices in a large city. Assume that the population...
Let X be the population of house prices in a large city. Assume that the population distribution of house prices is normal [i.e., X ~ N(μ, σ2)]. A random sample of 10 house prices (in thousands of $) provided the following data: 90 100 115 72 125 95 105 135 120 88 Find the standard error of the sample mean (?̅). Show your calculations. Write out the null and alternative hypotheses for determining whether the population mean differs from 90...
(1) These are the sales prices of recent home sales at a real estate office: $475,000...
(1) These are the sales prices of recent home sales at a real estate office: $475,000 $310,000   $350,000    $400,000   $475,000   $1,000,000   $390,000 Find the x̄, median and the mode for the prices. In your opinion, which is the best measure of central tendency for this data set? Why? (2) Identify the population, parameter, sample, and statistic in the statistical study quoted below. What type of data was gathered in the study? The United Hospital Fund recently examined the cases of...
Test if there is a significant difference in house prices for houses with 4 or more...
Test if there is a significant difference in house prices for houses with 4 or more bedrooms, if compared to houses with 3 or less bedrooms. Answer the questions for Assessment. (Pick the closest answer) 1. What is the P-value? a. 0.074081031 b. ​​1.85525E-07 c. 0.002738669 d. 0.000144083 2. What is the Statistical interpretation? a. The P-value is too small to have a conclusive answer. b. The P-value is much smaller than 5% thus we are very certain that house...
[4] The prices of condos in a city are normally distributed with a mean of $90,000...
[4] The prices of condos in a city are normally distributed with a mean of $90,000 and a standard deviation of $28,000. The city government exempts the cheapest 6.68% of the condos from city taxes. What is the maximum price of the condos that will be exempt from city taxes? If 1.79% of the most expensive condos are subject to a luxury tax, what is the minimum price of condos that will be subject to the luxury tax?
PROBLEM 5 – HOUSING PRICES Situation: Real Estate One conducted a recent survey of house prices...
PROBLEM 5 – HOUSING PRICES Situation: Real Estate One conducted a recent survey of house prices for properties located on the shores of Tawas Bay. Data on 26 recent sales, including the number of bathroom, square feet and bedrooms are below. Selling Price Baths Sq Ft Beds 160000 1.5 1776 3 170000 2 1768 3 178000 1 1219 3 182500 1 1568 2 195100 1.5 1125 3 212500 2 1196 2 245900 2 2128 3 250000 3 1280 3 255000...
A real estate agency says that the mean home sales price in City A is the...
A real estate agency says that the mean home sales price in City A is the same as in City B. The mean home sales price for 30 homes in City A is ​$127,402. Assume the population standard deviation is ​$25,880. The mean home sales price for 30 homes in City B is ​$112, 276. Assume the population standard deviation is ​$27,112. At alpha =0.01​, is there enough evidence to reject the​ agency's claim? Find the critical​ value(s) and identify...
A real estate agency says that the mean home sales price in City A is the...
A real estate agency says that the mean home sales price in City A is the same as in City B. The mean home sales price for 20 homes in City A is ​$127 comma 462. Assume the population standard deviation is ​$25 comma 879. The mean home sales price for 20 homes in City B is ​$112 comma 289. Assume the population standard deviation is ​$27 comma 112. At alphaequals0.01​, is there enough evidence to reject the​ agency's claim?...
Use this sample of house prices and lot sizes in the Pelham Bay neighborhood of the...
Use this sample of house prices and lot sizes in the Pelham Bay neighborhood of the Bronx from 2018-2019 to answer the questions below. price lot size 490000 2503 512000 2483 345000 2500 508670 2900 550000 2513 300000 2513 995000 4950 920000 3135 470000 2375 450000 2375 What kind of data is this? For one of the series, and for 3 equally spaced non-overlapping intervals what in the interval size, the beginning, end and midpoint of each interval, the frequency,...
Consider a home mortgage problem. The house in question will cost $200,000. The down payment is...
Consider a home mortgage problem. The house in question will cost $200,000. The down payment is 20%, or $40,000, which means the loan will be for $160,000. The loan will be a 15-year loan. The annual interest rate (APR) is 3.5%. Payments to the bank are monthly. Address the following: Compute the monthly loan payment Construct a loan amortization schedule for the life of the loan In addition to the monthly loan payments, it is estimated that the following outflows...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT