In: Math
Problem 4: House Prices
Use the “Fairfax City Home Sales” dataset for parts of this problem.
a) Use StatCrunch to construct an appropriately titled and labeled relative frequency histogram of Fairfax home closing prices stored in the “Price” variable. Copy your histogram into your document.
b) What is the shape of this distribution? Answer this question in one complete sentence.
c) Assuming the population has a similar shape as the sample with population mean $510,000 and population standard deviation $145,000; calculate the probability that in a random sample of size 10, the mean of the sample will be greater than $600,000. You may assume a random sample was taken and the sample came from a big population. However, be sure to check the central limit theorem condition of a large sample size before completing this problem using one complete sentence. If this condition is not met, you cannot complete the problem.
d) Assuming the population has a similar shape as the sample with population mean $510,000 and population standard deviation $145,000; calculate the probability that in a random sample of size 36, the mean of the sample will be greater than $600,000. You may assume a random sample was taken and the sample came from a big population. However, be sure to check the central limit theorem condition of a large sample size before completing this problem using one complete sentence. If this condition is not met, you cannot complete the problem.
Data:
Price Year, Days, TLArea, Acres
369900 1922 44 1870 0.39
373000 1952 0 1242 0.27
375000 1952 8 932 0.15
375000 1950 2 768 0.19
379000 1952 31 816 0.21
380000 1941 53 1092 0.19
385000 1951 5 984 0.27
387700 1953 5 975 0.36
395000 1954 18 957 0.29
395000 1951 12 1105 0.22
399900 1954 29 1206 0.28
399900 1951 6 1226 0.18
400000 1954 31 957 0.27
410000 1949 6 1440 0.2
410000 1954 17 1344 0.23
412500 1954 4 1008 0.25
415000 1953 17 1371 0.28
420000 1954 2 957 0.25
426000 1952 3 1694 0.25
430000 1953 19 975 0.23
434900 1950 5 1128 0.18
435000 1954 32 1252 0.24
440000 1960 3 1161 0.26
440000 1954 2 1036 0.28
440000 1955 12 1645 0.28
440000 1960 5 1746 0.31
441000 1952 133 1062 0.23
442000 1961 4 1414 0.32
443000 1951 26 962 0.2
444900 1955 4 1122 0.19
446500 1953 3 962 0.26
450000 1952 2 1488 0.15
450000 1955 49 1122 0.23
450000 1979 0 1092 0.28
450000 1951 70 962 0.2
450000 1957 23 1300 0.51
451000 1947 12 1325 0.34
455000 1952 7 2267 0.81
455000 1962 4 1050 0.31
460000 1955 5 997 0.3
460000 1954 10 1125 0.17
465000 1954 77 1288 0.46
465900 1947 21 1309 0.19
469000 1963 153 1149 0.27
474000 1959 5 1319 0.32
475000 1955 4 1530 0.28
475000 1953 29 1008 0.2
475000 1955 6 1530 0.28
475000 1956 116 1345 0.5
475000 1956 1 1530 0.28
480000 1960 27 1236 0.27
480000 1959 133 1527 0.24
485000 1955 4 1008 0.24
485000 1956 74 977 0.24
488000 1960 11 1972 0.33
500000 1963 0 2145 0.25
500000 1953 14 1758 0.54
500500 1955 6 1630 0.28
510000 1959 5 1680 0.34
512000 1963 0 1968 0.22
519000 1961 1 1312 0.29
520000 1954 15 1492 0.25
520000 1958 80 1443 0.33
520000 1963 122 1822 0.32
530000 1962 6 1393 0.29
540000 1962 12 1414 0.25
543600 1962 4 1414 0.24
560000 1967 5 1530 0.28
560000 1961 16 1438 0.53
565000 1947 6 1510 0.25
565500 1967 5 1217 0.26
589000 1954 32 2368 0.3
593000 1954 9 2044 0.25
610000 1978 140 2091 0.09
655000 1976 180 2728 0.24
660000 1947 10 2635 0.22
665000 1950 37 2645 0.57
685000 1982 120 2752 0.09
795000 2002 259 3402 0.12
852000 2000 4 3215 0.11
895000 2000 63 3230 0.11
930000 2015 135 3175 0.15
940000 1860 42 3038 0.57
968500 1850 74 3630 0.34
1100000 2004 161 3640 0.19
(a) The Histogram is obtained as:
> price = c(369900, 373000, 375000, 375000, 379000, 380000, 385000, 387700, 395000, 395000, 399900, 399900, 400000, 410000, 410000, 412500, 415000, 420000, 426000, 430000, 434900, 435000, 440000, 440000, 440000, 440000, 441000, 442000, 443000, 444900, 446500, 450000, 450000, 450000, 450000, 450000, 451000, 455000, 455000, 460000, 460000, 465000, 465900, 469000, 474000, 475000, 475000, 475000, 475000, 475000, 480000, 480000, 485000, 485000, 488000, 500000, 500000, 500500, 510000, 512000, 519000, 520000, 520000, 520000, 530000, 540000, 543600, 560000, 560000, 565000, 565500, 589000, 593000, 610000, 655000, 660000, 665000, 685000, 795000, 852000, 895000, 930000, 940000, 968500, 1100000)
> hist(price, breaks = 10, main="Fairfax Home Closing Prices", xaxt='n')
> axis(side=1, at=seq(350000,1500000, 100000), labels=seq(350000,1500000, 100000))

(b) The Histogram is skewed (Non-Normal) to the right, which the tail is on the right side.
(c) We are to obtain:
where
is the sample mean.



Thus, the probability that in a random sample of size 10, the mean of the sample will be greater than $600,000 is obtained as 0.02483511.
(d) We are to obtain:
where
is the sample mean.



Thus, the probability that in a random sample of size 36, the mean of the sample will be greater than $600,000 is obtained as 0.06602641.