Question

In: Physics

Consider a photon that scatters off an electron. In the case of an electron which is...

Consider a photon that scatters off an electron. In the case of an electron which is not at rest, but rather which has a kinetic energy, E_e much larger than the photon energy. Find an expression for the photon energy after the interaction. To do this most simply, make a frame transformation to a frame where the electron is at rest, calculate the scattering , and then transform back to the original reference frame. For this problem, you may wish to work in terms of the wavelength of the photon, rather than its energy. You will find that this converts to a simple wavelength shift.

Solutions

Expert Solution


Related Solutions

A photon moving in the +x-direction, scatters off a free stationary electron. The wavelength of the...
A photon moving in the +x-direction, scatters off a free stationary electron. The wavelength of the incident photon is 0.0230 nm. After the collision, the electron moves at an angle α below the +x-axis, while the photon moves at an angle θ = 78.3° above the +x-axis. (For the purpose of this exercise, assume that the electron is traveling slow enough that the non-relativistic relationship between momentum and velocity can be used.) (a) What is the angle α (in degrees)?...
A photon moving in the +x-direction, scatters off a free stationary electron. The wavelength of the...
A photon moving in the +x-direction, scatters off a free stationary electron. The wavelength of the incident photon is 0.0330 nm. After the collision, the electron moves at an angle α below the +x-axis, while the photon moves at an angle θ = 73.3° above the +x-axis. (For the purpose of this exercise, assume that the electron is traveling slow enough that the non-relativistic relationship between momentum and velocity can be used.) (a) What is the angle α (in degrees)?...
A 3100 TeV photon strikes an electron at rest and scatters by an angle of 120°....
A 3100 TeV photon strikes an electron at rest and scatters by an angle of 120°. Find the frequency of the reflected photon using 2.4 pm for the Compton wavelength. Also find the kinetic energy of the electron. solve it using eV not  joule. Please show all the work with all the steps. I want to learn how to slove this kind of problem because similar one will ibe n my final exam. Thank you
An X-ray photon scatters from a free electron at rest at an angle of 110° relative...
An X-ray photon scatters from a free electron at rest at an angle of 110° relative to the incident direction. (a) If the scattered photon has a wavelength of 0.270 nm, what is the wavelength of the incident photon? (b) Determine the energy of the incident and scattered photons. c) Find the kinetic energy of the recoil electron.
An X-ray photon with a wavelength of 0.120 nm scatters from a free electron at rest....
An X-ray photon with a wavelength of 0.120 nm scatters from a free electron at rest. The scattered photon moves at an angle of 105° relative to its incident direction. (a) Find the initial momentum of the photon. kg·m/s (b) Find the final momentum of the photon. kg·m/s
Item 3.8 An X-ray photon scatters from a free electron at rest at an angle of...
Item 3.8 An X-ray photon scatters from a free electron at rest at an angle of 125 ∘ relative to the incident direction. Part A If the scattered photon has a wavelength of 0.310 nm, what is the wavelength of the incident photon? Express your answer using three significant figures. Part B Determine the energy of the incident photon.Express your answer using three significant figures.(end unit is keV) Part C Determine the energy of the scattered photon. Express your answer...
In a Compton scattering experiment, an incident photon of energy 295.00 kev scatters off a loosely...
In a Compton scattering experiment, an incident photon of energy 295.00 kev scatters off a loosely bound electron resulting in the scattered photon to have an energy of 159.00 kev. a. Determine the scattering angle for the scattered photon, relative to the original direction of travel, and b. Determine the energy of the scattered electron. c. If the photon is back scattered (θ = 180°), determine the momentum of the scattered electron, in units of (kg m/s).
A proton with initial wavelength the same as compton wavelength scatters off an electron( initially at...
A proton with initial wavelength the same as compton wavelength scatters off an electron( initially at rest) and bounces back. find the final energy, kinetic energy, and recoil speed.
A high frequency proton scatters off of an electron. At what angle should a detector be...
A high frequency proton scatters off of an electron. At what angle should a detector be placed to detect the photon if the change in wavelength is 1.4 x 10-4 nm?
A photon of wavelength 6.63 pm scatters at an angle of 167 ∘ from an initially...
A photon of wavelength 6.63 pm scatters at an angle of 167 ∘ from an initially stationary, unbound electron. What is the de Broglie wavelength of the electron after the photon has been scattered?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT