In: Advanced Math
Solve the following problems.
\( \cos (2 t+y) d y=d t \)
Solution
Solve the following problems.
\( \cos (2 t+y) d y=d t \)
Let \( u=2 t+y \Longrightarrow \frac{d u}{d t}=2+\frac{d y}{d t} \Longrightarrow \frac{d y}{d t}=\frac{d u}{d t}-2 \)
\( \Longrightarrow \cos (2 t+y) d y=d t \Longrightarrow \frac{d y}{d t}=\frac{1}{\cos (2 t+y)} \)
\( \Longrightarrow \frac{d u}{d t}=2+\frac{1}{\cos u} \)
\( \Longrightarrow \frac{d u}{d t}=\frac{2+\cos u}{\cos u} \Longrightarrow \frac{\cos u}{2+\cos u} d u=d t \)
\( \Longrightarrow \int \frac{\cos u}{2+\cos u} d u=\int d t \)
\( \Longrightarrow u-\tan \left(\frac{u}{2}\right)=t+C \)
Therefore. \( (2 t+y)-\tan \left(\frac{2 t+y}{2}\right)=t+C \)