Solution
(a) The number present after 12 hours.
Let t time after hours
p the original number of bacteria (t=0)
x the number of bacteria after time.
⟹dtdx=kx,k∈R
⟹x1dx=kdt
⟹∫x1dx=k∫dt
ln∣x∣+c=kt
when {t=0⟹x=p,p=500t=2⟹x=4p
⟹{(1):ln∣p∣+c=0⟹c=−ln∣p∣(2):ln∣4p∣+c=2k
(2) : ln∣4p∣−ln∣p∣=2k⟺ln(p4p)=2k⟹k=2ln4
(*) The number present after t=12h
⟹lnx−lnp=2ln4×12=6ln4
⟹lnx=ln(46×p)⟹x=46p=46×500
(b) The doubling time.
Let T the doubling time , T=2t
⟹lnx−lnp=kT=2kt
⟹lnx=tlnu+lnp
⟹lnx=ln(4tp)⟹x=4tp
Therefore.
(a). the number of bacteria after time is 500
(b). x=4tp