In: Advanced Math
The number of bacteria in a certain culture grows at a rate that is proportional to the number present. If the number increased from 500 to 2000 in 2 hours, determine.
(a) The number present after 12 hours.
(b) The doubling time.
Solution
(a) The number present after 12 hours.
Let t time after hours
p the original number of bacteria (t=0)
x the number of bacteria after time.
\( \implies \frac{dx}{dt}=kx,\quad k\in \mathbb{R} \)
\( \implies\frac{1}{x}dx=kdt \)
\( \implies\int\frac{1}{x}dx=k\int dt \)
\( ln|x|+c=kt \)
when \( \begin{cases} t=0\implies x=p,p=500 & \quad \\ t=2\implies x=4p & \quad \end{cases} \)
\( \implies\begin{cases} (1) : ln|p|+c=0\implies c=-ln|p| & \quad \\ (2) : ln|4p|+c=2k & \quad \end{cases} \)
(2) : \( ln|4p|-ln|p|=2k\iff ln\Big(\frac{4p}{p}\Big)=2k\implies k=\frac{ln4}{2} \)
(*) The number present after t=12h
\( \implies lnx-lnp=\frac{ln4}{2}\times 12=6ln4 \)
\( \implies lnx=ln\Big(4^6\times p\Big)\implies x=4^6p=4^6\times 500 \)
(b) The doubling time.
Let T the doubling time , T=2t
\( \implies lnx-lnp=kT=2kt \)
\( \implies lnx=tlnu+lnp \)
\( \implies lnx=ln\Big(4^tp\Big)\implies x=4^tp \)
Therefore.
(a). the number of bacteria after time is 500
(b). \( x=4^tp \)