Solution
Solve the following problems.
dtdytany=sin(t+y)+sin(t+y)
⟹dtdytany=2sintcosy
⟹cosytanydy=2sintdt
⟹∫cosytanydy=2∫sintdt
⟹secy=−2cost+C
Above integral explains below:
∫cosytanydy=∫tany⋅cosy1dy
=∫tanysecydy=secy+C
Therefore. secy=−2cost+C