In: Advanced Math
Solve the following problems.
\( \frac{d y}{d t} \tan y=\sin (t+y)+\sin (t+y) \)
Solution
Solve the following problems.
\( \frac{d y}{d t} \tan y=\sin (t+y)+\sin (t+y) \)
\( \Longrightarrow \frac{d y}{d t} \tan y=2 \sin t \cos y \)
\( \Longrightarrow \frac{\tan y}{\cos y} d y=2 \sin t d t \)
\( \Longrightarrow \int \frac{\tan y}{\cos y} d y=2 \int \sin t d t \)
\( \Longrightarrow \sec y=-2 \cos t+C \)
Above integral explains below:
\( \int \frac{\tan y}{\cos y} d y =\int \tan y \cdot \frac{1}{\cos y} d y \)
\( =\int \tan y \sec y d y=\sec y+C \)
Therefore. \( \sec y=-2 \cos t+C \)