In: Advanced Math
If the population of a country doubles in 50 years, in how many years will it treble, assuming that the rate of increase is proportional to the number of inhabitants?
Solution
Number of Inhabitants \( =x, \frac{d y}{d x} \times x \)
\( \frac{ dx }{ dt }= kx \Rightarrow \frac{ dx }{ x }= kdt \quad \)[ k is proportional constant ]
Integration both side, we get
\( \int \frac{d x}{x}=\int k d t \)
\( \Rightarrow \log x=k t+c \)
\( \Rightarrow x=e^{k t+c} \text { at } t=0, x=x_{0} \) \( \Rightarrow x_{0}=e^{c} \)
so \( x = e ^{ c } \cdot e ^{ kt } \Rightarrow x = x _{0} e ^{ kt } \)
Then \( t =50, P =2 x _{0} \)
\( 2 x _{0}= x _{0} e ^{ kt } \Rightarrow 2= e ^{ kt } \)
\( \log 2= k (50) \)
\( k =\frac{\log 2}{50} \)
\( P =3 x _{0}, t =? \)
\( 3 x _{0}= x _{0} e ^{\frac{ log2}{50} t } \Rightarrow 3= e ^{\frac{ log 2}{50} t } \)
Taking log both sides, we get
\( \log 3=\frac{\log 2}{50} t \Rightarrow t =50 \frac{\log 2}{\log 2} \)
\( \implies t=50[\log 3-\log 2]=50log_2(3)=79.24 \)
Therefore.\( t=79.24\quad year \)