Question

In: Physics

A sled slides without friction down a small, ice-covered hill. If the sled starts from rest...

A sled slides without friction down a small, ice-covered hill. If the sled starts from rest at the top of the hill, its speed at the bottom is 8.20 m/s. (a) On a second run, the sled starts with a speed of 2.80 m/s at the top. When it reaches the bottom of the hill, is its speed 11.0 m/s, more than 11.0 m/s, or less than 11.0 m/s?

more than 11.0 m/s

equal to 11.0 m/s

less than 11.0 m/s

Explain.

(b) Find the speed of the sled at the bottom of the hill after the second run. m/s

Solutions

Expert Solution

Let h be the height of the hill, the potential energy of the sled at the top of the hill is

where m is the mass of the sled and g is the gravitational acceleration of the Earth. The potential energy at the bottom of the hill is zero.

Let be the velocity of the sled at the top of the hill. The kinetic energy of the sled at the top is

Let be the velocity of the sled at the bottom of the hill. The kinetic energy of the sled at the bottom is

The mechanical energy of the sled at the top of the hill is

The mechanical energy of the sled at the bottom of the hill is

Given the sled slides without friction, the mechanical energy of the sled is conserved

In the first case, we get

In the second case, . Using equation (1)

Since 2gh depends only on the height of the hill and the gravitational acceleration of the Earth, it is the same in both the cases.

(a) The speed is less than 11.0 m/s

(b) The speed in the second run is 8.66 m/s


Related Solutions

A 12,000 N car starts from rest and rolls down a hill from a height of...
A 12,000 N car starts from rest and rolls down a hill from a height of 10.0 m (see figure). It then moves across a level surface and collides with a light spring-loaded guardrail. (a) Neglecting any losses due to friction, and ignoring the rotational kinetic energy of the wheels, find the maximum distance the spring is compressed. Assume a spring constant of 1.2  106 N/m. ? m (b) Calculate the maximum acceleration of the car after contact with the spring,...
An empty sled of mass 25 kg slides down a muddy hill with a constant speed...
An empty sled of mass 25 kg slides down a muddy hill with a constant speed of 2.4 m/s. The slope of the hill is inclined at an angle of 15
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.395. After sliding down a distance d = 5.60 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.650 kg at point . a) Find the speed of m1 at point  just before...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.455. After sliding down a distance d = 5.80 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.645 kg at point . (a) Find the speed of m1 at point  just before...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless incline. At point A, the box encounters a (massless) spring of spring constant k. It compresses the spring a distance x = 0.25 m to point B where the speed of the box is 4.4 m/s. The first box is then removed and a second box of mass m2 = 3.0 kg is placed on the same incline at the same initial point and...
A ski starts from rest and slides down a 30 ∘ incline 70 m long. A)If...
A ski starts from rest and slides down a 30 ∘ incline 70 m long. A)If the coefficient of friction is 0.075, what is the ski's speed at the base of the incline? B)If the snow is level at the foot of the incline and has the same coefficient of friction, how far will the ski travel along the level? Use energy methods.
A ski starts from rest and slides down a 30 ∘ incline 70 m long. a)...
A ski starts from rest and slides down a 30 ∘ incline 70 m long. a) If the coefficient of friction is 0.095, what is the ski's speed at the base of the incline? b) If the snow is level at the foot of the incline and has the same coefficient of friction, how far will the ski travel along the level? Use energy methods.
A child on a sled starts from rest at the top of a 20.0° slope. 1)...
A child on a sled starts from rest at the top of a 20.0° slope. 1) Assuming that there are no forces resisting the sled’s motion, how long will the child take to reach the bottom of the slope, 250 m from the top? (Express your answer to two significant figures.)
A 4.5 kg box slides down a 4.2-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 4.2-m -high frictionless hill, starting from rest, across a 2.3-m -wide horizontal surface, then hits a horizontal spring with spring constant 480 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.3-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.26. What is the speed of the box just before hitting the...
A skier starts from rest at the top of a hill that is inclined at 10.8°...
A skier starts from rest at the top of a hill that is inclined at 10.8° with respect to the horizontal. The hillside is 245 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT