Question

In: Physics

A ski starts from rest and slides down a 30 ∘ incline 70 m long. A)If...

A ski starts from rest and slides down a 30 ∘ incline 70 m long.

A)If the coefficient of friction is 0.075, what is the ski's speed at the base of the incline?

B)If the snow is level at the foot of the incline and has the same coefficient of friction, how far will the ski travel along the level? Use energy methods.

Solutions

Expert Solution

Gravitational acceleration = g = 9.81 m/s2

Mass of the ski = m

Angle of the incline = = 30o

Length of the incline = L = 70 m

Height of the incline = H = LSin

Coefficient of friction = = 0.075

Normal force on the ski from the incline = N1

Friction force on the ski on the incline = f1

Speed of the ski at the base of the incline = V

By conservation of energy the initial potential energy of the ski is equal to the kinetic energy of the ski at the bottom of the incline plus the work done against friction.

V = 24.44 m/s

Normal force on the ski from the level snow at the foot of the incline = N2

Friction force on the ski from the level snow = f2

Distance the ski travels along the level snow = D

The kinetic energy of the ski at the bottom of the incline is lost to the work done against friction as moves along the level snow.

D = 406 m

A) Speed of the ski at the base of the incline = 24.44 m/s

B) Distance the ski will travel along the level = 406 m


Related Solutions

An object of mass m1 = 0.435 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.395. After sliding down a distance d = 5.60 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.650 kg at point . a) Find the speed of m1 at point  just before...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.455. After sliding down a distance d = 5.80 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.645 kg at point . (a) Find the speed of m1 at point  just before...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless incline. At point A, the box encounters a (massless) spring of spring constant k. It compresses the spring a distance x = 0.25 m to point B where the speed of the box is 4.4 m/s. The first box is then removed and a second box of mass m2 = 3.0 kg is placed on the same incline at the same initial point and...
A ski jumper starts from rest 54.0 m above the ground on a frictionless track and...
A ski jumper starts from rest 54.0 m above the ground on a frictionless track and flies off the track at an angle of 45.0° above the horizontal and at a height of 19.0 m above the ground. Neglect air resistance. (a) What is her speed when she leaves the track? m/s (b) What is the maximum altitude she attains after leaving the track? m (c) Where does she land relative to the end of the track? m
Beginning from rest, an object of mass 200 kg slides down a 9-m-long ramp. The ramp...
Beginning from rest, an object of mass 200 kg slides down a 9-m-long ramp. The ramp is inclined at an angle of 20o from the horizontal. Air resistance and friction between the object and the ramp are negligible. Let g = 9.81 m/s2. Determine the kinetic energy of the object, in kJ, and the velocity of the object, in m/s, at the bottom of the ramp.
A student of mass 65.4 kg, starting at rest, slides down a slide 17.2 m long,...
A student of mass 65.4 kg, starting at rest, slides down a slide 17.2 m long, tilted at an angle of 30.1° with respect to the horizontal. If the coefficient of kinetic friction between the student and the slide is 0.118, find the force of kinetic friction, the acceleration, and the speed she is traveling when she reaches the bottom of the slide. (Enter the magnitudes.) HINT (a) the force of kinetic friction (in N) N (b) the acceleration (in...
A ski jumper starts from rest from point A at the top of a hill that...
A ski jumper starts from rest from point A at the top of a hill that is a height h1 above point B at the bottom of the hill. The skier and skis have a combined mass of 80 kg. The skier slides down the hill and then up a ramp and is launched into the air at point C that is a height of 10m above the ground. The skier reaches point C traveling at 42m/s. (a) Is the...
an object m = 3.05kg rolls from rest down an incline plane, its center initially at...
an object m = 3.05kg rolls from rest down an incline plane, its center initially at a height of 7.55m above the bottom of the ramp. The inclination of the incline as measured from the horizontal is 37.3o. If the object is a solid uniform cylinder of radius r = 1.25m, then at the bottom of the incline, what is the (a) rotational kinetic energy and (b) the angular momentum. If the object is a hoop of radius, r =...
A skier of mass 75kg starts from rest at the top of a friction less incline...
A skier of mass 75kg starts from rest at the top of a friction less incline that is 20.0 m in height. As soon as she touches the bottom of the incline, she encounters a horizontal surface that is 1000 m long and the skier eventually comes to rest. The coefficient of kinetic friction between skier and snow is 0.205. Find the distance the skier covers before coming to rest. Show all work.
A ball rolls down along an incline without slipping. A block slides down from the same...
A ball rolls down along an incline without slipping. A block slides down from the same incline without friction. Assuming the two objects start from the same position, which of the following statement is correct?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT