Question

In: Physics

A wheel of a diameter 180 cm is turning at 3.0 rev/s. Eventually it starts to...

A wheel of a diameter 180 cm is turning at 3.0 rev/s. Eventually it starts to slow down and when it does, time starts at t = 0s. From the moment it starts to slow down it stops after 26 revolutions.

a) What is the wheel’s angular acceleration, in rad/s2?

b) What is the time required to stop the wheel, from the moment it starts slowing down?

c) What are the initial tangential speed and initial centripetal acceleration, at t = 0s, of the point on the rim of the wheel?

d) What is the total initial acceleration of the point on the rim of the wheel at t = 0s?

e) A star is rotating about an axis that passes through its center. When the star “dies,” the balance between the inward pressure due to the force of gravity and the outward pressure from nuclear processes is no longer present and the star collapses inward; and its radius decreases with time. Which one of the following choices best describes what happens as the star collapses? a) The angular velocity of the star remains constant. b) The angular velocity of the star increases. c) The angular velocity of the star decreases. d) The angular momentum of the star decreases. e) Both angular momentum and angular velocity increase.

Solutions

Expert Solution

please rate it up, Thanks!


Related Solutions

A vertical wheel with a diameter of 39 cm starts from rest and rotates with a...
A vertical wheel with a diameter of 39 cm starts from rest and rotates with a constant angular acceleration of 7.2 rad/s2 around a fixed axis through its center counterclockwise. a) Through what angle (in degrees) has the point initially at the bottom of the wheel traveled when t = 14 s? (Indicate the direction with the sign of your answer.) b) What is the point's total linear acceleration at this instant? (Enter the magnitude in m/s2.
A 500-loop circular armature coil with a diameter of 6.0 cm rotates at 190 rev/s in...
A 500-loop circular armature coil with a diameter of 6.0 cm rotates at 190 rev/s in a uniform magnetic field of strength 0.60 T . What is the rms voltage output of the generator? What would you do to the rotation frequency in order to double the rms voltage output? To double the output voltage, you must decrease by two times the rotation frequency. To double the output voltage, you must increase by four times the rotation frequency. To double...
A Ferris wheel with a diameter of 35.0 m in , starts from rest and achieves...
A Ferris wheel with a diameter of 35.0 m in , starts from rest and achieves its maximum operational tangential speed of 2.20 m/s in a time of 15.0 s. a.) what is the magnitude of the wheel
a- Water enters a house through a pipe with inside diameter of 3.0 cm at an...
a- Water enters a house through a pipe with inside diameter of 3.0 cm at an absolute pressure of 5.0 X 105 Pa. A 1.5 cm diameter pipe leads to the second-floor bathroom 6.0 m above. When the flow speed at the inlet pipe is 2.0 m/s find: - Flow speed (velocity) of the water in the bathroom - Pressure water in the bathroom? - Calculate the volume flow rate in the bathroom.
1. A 0.750 kg hollow sphere with a diameter of 25 cm diameter starts from rest...
1. A 0.750 kg hollow sphere with a diameter of 25 cm diameter starts from rest at the top of a 65 cm tall incline. There is just enough friction on the incline to make the sphere roll instead of slide. (a) What types of energy does the sphere have at the top? at the bottom? (b) What is the moment of inertia of the sphere? (c) What is the velocity of the sphere when it reaches the bottom of...
A bicycle wheel has a diameter of 63.0 cm and a mass of 1.74 kg. Assume...
A bicycle wheel has a diameter of 63.0 cm and a mass of 1.74 kg. Assume that the wheel is a hoop with all of the mass concentrated on the outside radius. The bicycle is placed on a stationary stand and a resistive force of 117 N is applied tangent to the rim of the tire. (a) What force must be applied by a chain passing over a 8.99-cm-diameter sprocket in order to give the wheel an acceleration of 4.49...
A flywheel turns through 22 rev as it slows from an angular speed of 3.0 rad/s...
A flywheel turns through 22 rev as it slows from an angular speed of 3.0 rad/s to a stop. (a) Assuming a constant angular acceleration, find the time for it to come to rest. = 92.15 s (b) What is its angular acceleration? _______rad/s2 (c) How much time is required for it to complete the first 11 of the 22 revolutions? _________ s
To transmit 75 kW at 25 rev/s using 48 mm diameter shafting. The flanges are to...
To transmit 75 kW at 25 rev/s using 48 mm diameter shafting. The flanges are to be made of cast iron and keyed to the shafts, and power is transmitted from one flange to the other by a circle of fitted bolts (four are shown in the above figure but more or less bolts can be used). The adopted bolts must comply to the following technical specification: Property Class Designation: 4.6 Nominal size range: M5 – M100 (Sizes M5 to...
A cylindrical shell of mass 2.0 kg and diameter 15 cm starts to rotate from rest...
A cylindrical shell of mass 2.0 kg and diameter 15 cm starts to rotate from rest around its central axis with a constant angular acceleration. It takes 2 minutes for the cylindrical shell to make 30 revolutions. A) Find the magnitude of the net torque exerted on the cylindrical shell when the cylindrical shell made 30 revolutions from rest? B) Find the magnitude of the total linear acceleration when the cylindrical shell made 20 revolutions from rest. C) Find the...
A 41.0-cm diameter disk rotates with a constant angular acceleration of 2.90 rad/s2. It starts from...
A 41.0-cm diameter disk rotates with a constant angular acceleration of 2.90 rad/s2. It starts from rest at t = 0, and a line drawn from the center of the disk to a point P on the rim of the disk makes an angle of 57.3° with the positive x-axis at this time. (a) At t = 2.49 s, find the angular speed of the wheel. (b) At t = 2.49 s, find the magnitude of the linear velocity AND...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT