Question

In: Physics

A bicycle wheel has a diameter of 63.0 cm and a mass of 1.74 kg. Assume...

A bicycle wheel has a diameter of 63.0 cm and a mass of 1.74 kg. Assume that the wheel is a hoop with all of the mass concentrated on the outside radius. The bicycle is placed on a stationary stand and a resistive force of 117 N is applied tangent to the rim of the tire.

(a) What force must be applied by a chain passing over a 8.99-cm-diameter sprocket in order to give the wheel an acceleration of 4.49 rad/s2?
N

(b) What force is required if you shift to a 5.70-cm-diameter sprocket?
kN

Solutions

Expert Solution

A bicycle wheel has a diameter of 63 cm and a mass of 1.74 kg. Assume that the wheel is a hoop with all of the mass concentrated on the outside radius. The bicycle is placed on a stationary stand and a resistive force of 117 N is applied tangent to the rim of the tire.

(a) What force must be applied by a chain passing over a 8.99 cm diameter sprocket if the wheel is to attain an acceleration of 4.49 rad/s2?
in N

Torque = Inertia x alpha (angular acceleration rad/s^2) = I*α
Torque also equals force x radius

First of all lets find the inertia of the wheel.

hoop = mr2 = 1.74 x 0.3152 = 0.17265 kg-m2

Torque = 0.17265 x 4.49 = 0.7752 Nm

0.7752/radius = force
0.7752/0.04495 = 17.246 N

What force must be applied to attain acc of 4.49 rad/s2?

17.246 N

117 N x 0.315 m = 36.855 Nm

36.855/ 0.04495 = 819.911 N

Total = 17.246 + 819.91 = 837.157 N (answer)

(b) What force is required if the chain shifts to a 5.70 cm diameter sprocket?


Shifting to 5.70 cm gives the result

4.49 = (F*0.0285 - 117*0.315)/0.17265

F = 1320.3578 N


Related Solutions

A regulation basketball has a 25.0-cm diameter and a mass of 0.560 kg. It may be...
A regulation basketball has a 25.0-cm diameter and a mass of 0.560 kg. It may be approximated as a thin spherical shell with a moment of inertia (2/3)MR^. Starting from rest, how long will it take a basketball to roll without slipping 4.00 m down an incline at 30.0° to the horizontal?
A) To measure the diameter of a ball bearing in a bicycle wheel hub, which of...
A) To measure the diameter of a ball bearing in a bicycle wheel hub, which of the following instruments is most appropriate? a) An electron microscope b) A meter stick c) A graduated cylinder d) Vernier calipers B) A meter stick is balanced on a fulcrum at the 50 cm mark. A student simultaneously suspends a 500 g mass at the 0 cm mark, and a 1 kg mass at the 76 cm mark. What happens next? a) the meter...
With axle and spokes of negligible mass and a thin rim, a certain bicycle wheel has...
With axle and spokes of negligible mass and a thin rim, a certain bicycle wheel has a radius of 0.350 m and weighs 33.0 N; it can turn on its axle with negligible friction. A man holds the wheel above his head with the axle vertical while he stands on a turntable that is free to rotate without friction; the wheel rotates clockwise, as seen from above, with an angular speed of 66.0 rad/s, and the turntable is initially at...
A solid, uniform cylinder with mass 8.25 kg and diameter 10.0 cm is spinning with angular...
A solid, uniform cylinder with mass 8.25 kg and diameter 10.0 cm is spinning with angular velocity 245 rpm on a thin, frictionless axle that passes along the cylinder axis. You design a simple friction-brake to stop the cylinder by pressing the brake against the outer rim with a normal force. The coefficient of kinetic friction between the brake and rim is 0.344.
A window washer with a mass of 63.0 kg stands a distance, D = 0.600 m,...
A window washer with a mass of 63.0 kg stands a distance, D = 0.600 m, from the left end of a plank of length, L= 2.10 m, with a mass of 19.0 kg. The plank is hung on two cables as shown. Find T2, the tension in the right cable.
Spinning with the bicycle wheel. The person sat on the stool holding the bicycle wheel with...
Spinning with the bicycle wheel. The person sat on the stool holding the bicycle wheel with the handles vertical and the wheel stopped. Hint the person move counterclockwise. 6. With person feet off the floor (and on the stool’s foot support), the wheel was set to spin rapidly. In which direction is the wheel spinning (CW or CCW)? In which direction was the person spinning (CW or CCW)? 7. The person now stops the wheel. What happens? 8. Explain what...
A wheel has a mass of 0.5 kg and a radius of 0.25 m. It rolls...
A wheel has a mass of 0.5 kg and a radius of 0.25 m. It rolls such that the center of mass of the wheel has a velocity of 10 m/s. a) Calculate the angular velocity of the wheel. b) Calculate the translational kinetic energy of the wheel. c) Calculate the rotational kinetic energy of the wheel. d) Calculate the total kinetic energy of the wheel by summing the two kinetic energies
A cylindrical shell of mass 2.0 kg and diameter 15 cm starts to rotate from rest...
A cylindrical shell of mass 2.0 kg and diameter 15 cm starts to rotate from rest around its central axis with a constant angular acceleration. It takes 2 minutes for the cylindrical shell to make 30 revolutions. A) Find the magnitude of the net torque exerted on the cylindrical shell when the cylindrical shell made 30 revolutions from rest? B) Find the magnitude of the total linear acceleration when the cylindrical shell made 20 revolutions from rest. C) Find the...
A hollow, thin-walled sphere of mass 11.0 kg and diameter 48.0 cm is rotating about an...
A hollow, thin-walled sphere of mass 11.0 kg and diameter 48.0 cm is rotating about an axle through its center. The angle (in radians) through which it turns as a function of time (in seconds) is given by θ(t)=At2+Bt4, where A has numerical value 1.20 and Bhas numerical value 1.60. At the time 3.00 s , find the angular momentum of the sphere. At the time 3.00 s , find the net torque on the sphere.
A vertical wheel with a diameter of 39 cm starts from rest and rotates with a...
A vertical wheel with a diameter of 39 cm starts from rest and rotates with a constant angular acceleration of 7.2 rad/s2 around a fixed axis through its center counterclockwise. a) Through what angle (in degrees) has the point initially at the bottom of the wheel traveled when t = 14 s? (Indicate the direction with the sign of your answer.) b) What is the point's total linear acceleration at this instant? (Enter the magnitude in m/s2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT