Question

In: Statistics and Probability

1. Given a normal distribution with μ=102 and σ=25, if you select a sample of n=12,...

1. Given a normal distribution with μ=102 and σ=25, if you select a sample of n=12, what is the probability that ?̅ is


a. less than 90 ?
b. between 90 and 92.5 ?
c. above 103.6 ?

2. Given a normal distribution with μ=101 and σ=15, if you select a sample of n=9, what is the probability that ?̅ is
a. less than 95 ?
b. between 90 and 92.5 ?
c. above 101.8 ?

Solutions

Expert Solution

Question 1

Part a)


P ( X < 90 )
Standardizing the value


Z = -1.66

P ( X < 90 ) = P ( Z < -1.66 )
P ( X < 90 ) = 0.0482

Part b)


P ( 90 < X < 92.5 )
Standardizing the value


Z = -1.66

Z = -1.32
P ( -1.66 < Z < -1.32 )
P ( 90 < X < 92.5 ) = P ( Z < -1.32 ) - P ( Z < -1.66 )
P ( 90 < X < 92.5 ) = 0.094 - 0.0482
P ( 90 < X < 92.5 ) = 0.0458

Part c)


P ( X > 103.6 ) = 1 - P ( X < 103.6 )
Standardizing the value


Z = 0.22

P ( Z > 0.22 )
P ( X > 103.6 ) = 1 - P ( Z < 0.22 )
P ( X > 103.6 ) = 1 - 0.5877
P ( X > 103.6 ) = 0.4123

Question 2

Part a)


P ( X < 95 )
Standardizing the value


Z = -1.2

P ( X < 95 ) = P ( Z < -1.2 )
P ( X < 95 ) = 0.1151

Part b)


P ( 90 < X < 92.5 )
Standardizing the value


Z = -2.2

Z = -1.7
P ( -2.2 < Z < -1.7 )
P ( 90 < X < 92.5 ) = P ( Z < -1.7 ) - P ( Z < -2.2 )
P ( 90 < X < 92.5 ) = 0.0446 - 0.0139
P ( 90 < X < 92.5 ) = 0.0307

Part c)


P ( X > 101.8 ) = 1 - P ( X < 101.8 )
Standardizing the value


Z = 0.16

P ( Z > 0.16 )
P ( X > 101.8 ) = 1 - P ( Z < 0.16 )
P ( X > 101.8 ) = 1 - 0.5636
P ( X > 101.8 ) = 0.4364


Related Solutions

Given a normal distribution with μ=103 and σ=25​, and given you select a sample of n=25​,...
Given a normal distribution with μ=103 and σ=25​, and given you select a sample of n=25​, complete parts​ (a) through​ (d). What is the probability that X is between 91 and 93.5​? ​P(91<X<93.5​)=
Given a normal distribution with muequals50 and sigmaequals4​, and given you select a sample of n...
Given a normal distribution with muequals50 and sigmaequals4​, and given you select a sample of n equals 100​. What is the probability that Upper X overbar is above 50.1​?
given a normal distribution with µ = 105 and Q=25 , if you select a sample...
given a normal distribution with µ = 105 and Q=25 , if you select a sample of n=25 ,what is the probability that X is a, less than 94? b, between 95 and 95.5? c, above 106.2? d, there is a 60% chance that X is above what value? σ=25
A normal distribution has a mean of μ = 80 with σ = 12. Find the...
A normal distribution has a mean of μ = 80 with σ = 12. Find the following probabilities. (a) p(X > 83) (b) p(X < 74) (c) p(X < 92) (d) p(71 < X < 89)
If μ = 100, σ = 12, and n = 16, then use the t distribution...
If μ = 100, σ = 12, and n = 16, then use the t distribution to evaluate the probability ?̅ exceeds 103? Express your answer as a percentage with 3 decimals.
Given a normal distribution with μ=40 and σ =9​, find​ (a) the normal curve area to...
Given a normal distribution with μ=40 and σ =9​, find​ (a) the normal curve area to the right of x=25; (b) the normal curve area to the left of x=29; (c) the normal curve area between x=43 and x=52​; (d) the value of x that has 90​% of the normal curve area to the​ left; and​ (e) the two values of x that contain the middle 70​% of the normal curve area.
Given a normal distribution with μ=40 and σ=66​, find​ (a) the normal curve area to the...
Given a normal distribution with μ=40 and σ=66​, find​ (a) the normal curve area to the right of x=24; (b) the normal curve area to the left of x=29; (c) the normal curve area between x=47 and x=54; ​(d) the value of x that has 70​% of the normal curve area to the​ left; and​ (e) the two values of x that contain the middle 65​% of the normal curve area.
Write the python code that generates a normal sample with given μ and σ, and the...
Write the python code that generates a normal sample with given μ and σ, and the code that calculates m (sample mean) and s (sample standard deviation) from the sample.
Write the python code that generates a normal sample with given μ and σ, and the...
Write the python code that generates a normal sample with given μ and σ, and the code that calculates m and s from the sample. Do the same using the Bayes’ estimator assuming a prior distribution for μ.
1) A population of values has a normal distribution with μ = 97.3 and σ =...
1) A population of values has a normal distribution with μ = 97.3 and σ = 21.5 . You intend to draw a random sample of size n = 42 . A) Find the probability that a single randomly selected value is greater than 107.3. P(X > 107.3) = Round to 4 decimal places. B) Find the probability that the sample mean is greater than 107.3. P( ¯¯¯ X > 107.3) = Round to 4 decimal places. Answers obtained using...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT