In: Statistics and Probability
A normal distribution has a mean of μ = 80 with σ = 12. Find the following probabilities.
(a) p(X > 83)
(b) p(X < 74)
(c) p(X < 92)
(d) p(71 < X < 89)
Solution :
Given that ,
mean = = 80
standard deviation = = 12
P(x >83 ) = 1 - P(x<83 )
= 1 - P[(x -) / < (83 - 80) /12 ]
= 1 - P(z <0.25 )
Using z table
= 1 - 0.5987
= 0.4013
probability= 0.4013
(B)
P(X< 74) = P[(X- ) / < (74 - 80) /12 ]
= P(z <-0.5 )
Using z table
= 0.3085
probability=0.3085
(C)
P(X< 92) = P[(X- ) / < (92 - 80) /12 ]
= P(z <1)
Using z table
= 0.8413
probability=0.8413
(D)
P(71< x < 89) = P[(71 -80) / 12< (x - ) / < (89 -80) /12 )]
= P( -0.75< Z <0.75 )
= P(Z <0.75 ) - P(Z < -0.75)
Using z table
= 0.7734 -0.2266
probability= 0.5468