Question

In: Statistics and Probability

Find: P(Z < -1.24) and also P( Z > 2.73)

Find: P(Z < -1.24) and also P( Z > 2.73)

Solutions

Expert Solution

From the z table image below:

P(Z < -1.24) = 0.1075

And

P(Z > 2.73) = P(Z < -2.73) = 0.0032


Related Solutions

(a) Find P [Z > 1.26]. (b) Find P [Z > -1.37}. (c) find P[-1.25 (a)...
(a) Find P [Z > 1.26]. (b) Find P [Z > -1.37}. (c) find P[-1.25 (a) Find P [Z > 1.26]. (b) Find P [Z > -1.37}. (c) find P[-1.25<Z<0.37). (d) find z such that P[Z>z]=0.05. (e) find z such that P[-z<Z<z]=0.99. (f) find the value of k such that P[k<Z<-0.18]=0.4197
Find the probability P(Z < −2.28)
Find the probability P(Z < −2.28)
find p (-1.20< z< 2.03)
find p (-1.20< z< 2.03)
. Find the z-score for Kohl’s for Profit Margin. Also, find the z-score for Kohl’s for...
. Find the z-score for Kohl’s for Profit Margin. Also, find the z-score for Kohl’s for Price/Sales. Describe, in a few sentences, the meaning of these z-scores. Profit Margin (cents per $1 sales) 7 2 1 11 6 3 4 -9 3 2 3 2 -2 10 2 -2 2 5 -3 2 1 6 -3 -1 5 3 4 5 4 7 3 1 4 -16 -1 -4 8 6 2 4 7 1 4 Price to Sales (ratio)...
6.8 For normal(0,1), find a number z ∗ solving P(−z ∗ ≤ Z ≤ z ∗...
6.8 For normal(0,1), find a number z ∗ solving P(−z ∗ ≤ Z ≤ z ∗ ) = .05 (use qnorm and symmetry).R coding 6.10 Make a histogram of 100 exponential numbers with mean 10. Estimate the median. Is it more or less than the mean?
find the probabilities for each using the standard normal distribution. p(0<z<0.95), p(0<z<1.96), p(-1.38<z<0), p(z>2.33), p(z<-1.51), p(1.56<z<2.13),...
find the probabilities for each using the standard normal distribution. p(0<z<0.95), p(0<z<1.96), p(-1.38<z<0), p(z>2.33), p(z<-1.51), p(1.56<z<2.13), p(z<1.42)
Find the following probabilities for the standard normal random variable z z : a) P(−2.07≤z≤1.93)= P...
Find the following probabilities for the standard normal random variable z z : a) P(−2.07≤z≤1.93)= P ( − 2.07 ≤ z ≤ 1.93 ) = (b) P(−0.46≤z≤1.73)= P ( − 0.46 ≤ z ≤ 1.73 ) = (c) P(z≤1.44)= P ( z ≤ 1.44 ) = (d) P(z>−1.57)= P ( z > − 1.57 ) =
1.- Find the following probabilities. (a) P(Z > 1.4)    (b) P(−1 < Z < 1)...
1.- Find the following probabilities. (a) P(Z > 1.4)    (b) P(−1 < Z < 1) (c) P(Z < −1.49) 2.- Find (a) Z0.03 (b) Z0.07 3.- The distance that a Tesla model 3 can travel is normally distributed with a mean of 260 miles and a standard deviation of 25 miles. (a) What is the probability that a randomly selected Tesla model 3 can travel more than 310 miles? (b) What is the probability that a randomly selected Tesla...
For a standard normal distribution, find 1. P(z > c)=0.3796 Find c. 2. P(z < c)=0.0257...
For a standard normal distribution, find 1. P(z > c)=0.3796 Find c. 2. P(z < c)=0.0257 Find c. 3. P(-2.68< z > -0.38) 4. P(z > -1.55) 5. P(z < -0.32)
Find the indicated probabilities using a standard normal distribution a. P(Z < 1.85) b. P(Z <...
Find the indicated probabilities using a standard normal distribution a. P(Z < 1.85) b. P(Z < -1.54 or Z > 1.54)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT