Question

In: Math

Find the indicated probabilities using a standard normal distribution a. P(Z < 1.85) b. P(Z <...

Find the indicated probabilities using a standard normal distribution
a. P(Z < 1.85)
b. P(Z < -1.54 or Z > 1.54)

Solutions

Expert Solution

a) P( z < 1.85)

P( z < 1.85) = 0.9678

b. P(Z < -1.54 or Z > 1.54)

From table P(z < 1.54 ) = 0.9382

First we have to find P( z > 1.54 ) = 1 - P( z < 1.54) = 1 - 0.9382

Therefore P( z > 1.54 ) = 0.0618

Normal distribution is symmetric , therefore P( z > 1.54 ) = P( z < -1.54) = 0.0618

Therefore b. P(Z < -1.54 or Z > 1.54) = P( z > 1.54 ) + P( z < -1.54) = 0.0618 +0.018

P(Z < -1.54 or Z > 1.54) = 0.1236


Related Solutions

Find the indicated probability using the standard normal distribution. ​P(z < -0.39​)
Find the indicated probability using the standard normal distribution. ​P(z < -0.39​)
Find the indicated probability using the standard normal distribution. ​P(−0.11< z < 0.11) ​P(−0.11< z <...
Find the indicated probability using the standard normal distribution. ​P(−0.11< z < 0.11) ​P(−0.11< z < 0.11)=
Find the indicated probability using the standard normal distribution. P(0< z<0.455)
Find the indicated probability using the standard normal distribution. P(0< z<0.455)
Using the standard normal distribution, find each probability. a) P(0 < z < 2.23) b) P...
Using the standard normal distribution, find each probability. a) P(0 < z < 2.23) b) P (-1.75 < z < 0) c) P (-1.48 < z < 1.68) d) P (1.22 < z < 1.77) e) P (-2.31 < z < 0.32)
Find each of the probabilities where z is a z-score from a standard normal distribution with...
Find each of the probabilities where z is a z-score from a standard normal distribution with a mean of μ=0 and standard deviation σ=1. Make sure you draw a picture of each problem.   Show all steps with TI 83 P(z < 2.15) P(z > 0.71) P(-1.45 <z < 2.17)
find the probabilities for each using the standard normal distribution. p(0<z<0.95), p(0<z<1.96), p(-1.38<z<0), p(z>2.33), p(z<-1.51), p(1.56<z<2.13),...
find the probabilities for each using the standard normal distribution. p(0<z<0.95), p(0<z<1.96), p(-1.38<z<0), p(z>2.33), p(z<-1.51), p(1.56<z<2.13), p(z<1.42)
Find the following probabilities for the standard normal random variable z z : a) P(−2.07≤z≤1.93)= P...
Find the following probabilities for the standard normal random variable z z : a) P(−2.07≤z≤1.93)= P ( − 2.07 ≤ z ≤ 1.93 ) = (b) P(−0.46≤z≤1.73)= P ( − 0.46 ≤ z ≤ 1.73 ) = (c) P(z≤1.44)= P ( z ≤ 1.44 ) = (d) P(z>−1.57)= P ( z > − 1.57 ) =
Find the following probabilities for the standard normal random variable z: (a) P(−0.76<z<0.75)= (b) P(−0.98<z<1.36)= (c)...
Find the following probabilities for the standard normal random variable z: (a) P(−0.76<z<0.75)= (b) P(−0.98<z<1.36)= (c) P(z<1.94)= (d) P(z>−1.2)= 2. Suppose the scores of students on an exam are Normally distributed with a mean of 480 and a standard deviation of 59. Then approximately 99.7% of the exam scores lie between the numbers ---- and -----. ?? Hint: You do not need to use table E for this problem.
1. Suppose a random variable, Z, follows a Standard Normal distribution. Find the following probabilities using...
1. Suppose a random variable, Z, follows a Standard Normal distribution. Find the following probabilities using the z-table.   For the Z distribution, find the following. Use z-table and check with Excel. Sketch, etc.             (a) the 28th percentile             (b) the 59th percentile.
For a standard normal distribution, find: P(-1.64 < z < -1.48)
For a standard normal distribution, find: P(-1.64 < z < -1.48)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT