Question

In: Statistics and Probability

6.8 For normal(0,1), find a number z ∗ solving P(−z ∗ ≤ Z ≤ z ∗...

6.8 For normal(0,1), find a number z ∗ solving P(−z ∗ ≤ Z ≤ z ∗ ) = .05 (use qnorm and symmetry).R coding

6.10 Make a histogram of 100 exponential numbers with mean 10. Estimate the median. Is it more or less than the mean?

Solutions

Expert Solution

Note:

Hey there! Thank you for the question. As you have posted 2 unrelated questions together, we have solved the first one for you.

6.8.

The “qnorm” function in R can provide the variable value for a normal variable with specified mean and standard deviation, if the cumulative probability corresponding to that value is given. The formula is to be entered in the form: qnorm(p,mean-standard_deviation), where p is the given cumulative probability.

Due to symmetry of the normal distribution,

As a result,

Now, for the standard normal variate Z, the mean is 0 and the standard deviation is 1.

Enter the following formula in an R console:

Press Enter.

The variable value is obtained as 0.0627 (correct to 4 decimal places).

Hence, the value of z* is 0.0627.


Related Solutions

4. a. Suppose Z~Normal(0,1). Find P(1<Z<2). (3pts) b. Suppose X~Normal(-2,1). Find P(X>0 or X<-3). (3pts) c....
4. a. Suppose Z~Normal(0,1). Find P(1<Z<2). (3pts) b. Suppose X~Normal(-2,1). Find P(X>0 or X<-3). (3pts) c. Suppose X~Normal(2,4). The middle 88% of the X values are between what two values? (3pts)
Find the following probabilities for the standard normal random variable z z : a) P(−2.07≤z≤1.93)= P...
Find the following probabilities for the standard normal random variable z z : a) P(−2.07≤z≤1.93)= P ( − 2.07 ≤ z ≤ 1.93 ) = (b) P(−0.46≤z≤1.73)= P ( − 0.46 ≤ z ≤ 1.73 ) = (c) P(z≤1.44)= P ( z ≤ 1.44 ) = (d) P(z>−1.57)= P ( z > − 1.57 ) =
Let z be a random variable with a standard normal distribution. Find “a” such that P(|Z|...
Let z be a random variable with a standard normal distribution. Find “a” such that P(|Z| <A)= 0.95 This is what I have: P(-A<Z<A) = 0.95 -A = -1.96 How do I use the symmetric property of normal distribution to make A = 1.96? My answer at the moment is P(|z|< (-1.96) = 0.95
Find the following probabilities for two normal random variablesZ=N(0,1) andX=N(−1,9). (a)P(Z >−1.48). (b)P(|X|<2.30). (c) What is...
Find the following probabilities for two normal random variablesZ=N(0,1) andX=N(−1,9). (a)P(Z >−1.48). (b)P(|X|<2.30). (c) What is the type and the parameters of the random variableY= 3X+ 5?
Find the indicated probabilities using a standard normal distribution a. P(Z < 1.85) b. P(Z <...
Find the indicated probabilities using a standard normal distribution a. P(Z < 1.85) b. P(Z < -1.54 or Z > 1.54)
For a standard normal distribution, find: P(-1.64 < z < -1.48)
For a standard normal distribution, find: P(-1.64 < z < -1.48)
For a standard normal distribution, find: P(z > c) = 0.7491
For a standard normal distribution, find: P(z > c) = 0.7491
For a standard normal distribution, find 1. P(z > c)=0.3796 Find c. 2. P(z < c)=0.0257...
For a standard normal distribution, find 1. P(z > c)=0.3796 Find c. 2. P(z < c)=0.0257 Find c. 3. P(-2.68< z > -0.38) 4. P(z > -1.55) 5. P(z < -0.32)
Let z be a random variable with a standard normal distribution. Find P(0 ≤ z ≤...
Let z be a random variable with a standard normal distribution. Find P(0 ≤ z ≤ 0.46), and shade the corresponding area under the standard normal curve. (Use 4 decimal places.)
1. If Z is a standard normal random variable, find c such that P(−c ≤ Z...
1. If Z is a standard normal random variable, find c such that P(−c ≤ Z ≤ c) = 0.82. [Answer to 2 decimal places] 2. Weakly earnings on a certain import venture are approximately normally distributed with a known mean of $353 and unknown standard deviation. If the proportion of earnings over $386 is 25%, find the standard deviation. Answer only up to two digits after decimal. 3. X is a normal random variable with mean μ and standard...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT