In: Statistics and Probability
. Find the z-score for Kohl’s for Profit Margin. Also, find the z-score for Kohl’s for Price/Sales. Describe, in a few sentences, the meaning of these z-scores.
Profit Margin |
(cents per $1 sales) |
7 |
2 |
1 |
11 |
6 |
3 |
4 |
-9 |
3 |
2 |
3 |
2 |
-2 |
10 |
2 |
-2 |
2 |
5 |
-3 |
2 |
1 |
6 |
-3 |
-1 |
5 |
3 |
4 |
5 |
4 |
7 |
3 |
1 |
4 |
-16 |
-1 |
-4 |
8 |
6 |
2 |
4 |
7 |
1 |
4 |
Price to Sales |
(ratio) |
0.8 |
0.4 |
0.2 |
1.1 |
1.2 |
0.4 |
0.4 |
0.1 |
0.3 |
0.6 |
0.3 |
0.2 |
0.1 |
0.2 |
0.7 |
0.2 |
0.2 |
0.7 |
0.1 |
0.3 |
0.7 |
0.6 |
0.1 |
0.1 |
0.3 |
0.5 |
0.5 |
0.5 |
0.4 |
0.8 |
0.6 |
0.2 |
0.5 |
0.1 |
0.1 |
0.1 |
1.2 |
0.6 |
0.2 |
0.5 |
0.9 |
0.5 |
0.5 |
Profit Margin(cents per $1 sales) (Xi) | Z = (Xi -Mean(X)) /SD(X) |
7 | 0.9924 |
2 | -0.0639 |
1 | -0.2751 |
11 | 1.8375 |
6 | 0.7812 |
3 | 0.1474 |
4 | 0.3586 |
-9 | -2.3877 |
3 | 0.1474 |
2 | -0.0639 |
3 | 0.1474 |
2 | -0.0639 |
-2 | -0.9089 |
10 | 1.6262 |
2 | -0.0639 |
-2 | -0.9089 |
2 | -0.0639 |
5 | 0.5699 |
-3 | -1.1202 |
2 | -0.0639 |
1 | -0.2751 |
6 | 0.7812 |
-3 | -1.1202 |
-1 | -0.6976 |
5 | 0.5699 |
3 | 0.1474 |
4 | 0.3586 |
5 | 0.5699 |
4 | 0.3586 |
7 | 0.9924 |
3 | 0.1474 |
1 | -0.2751 |
4 | 0.3586 |
-16 | -3.8665 |
-1 | -0.6976 |
-4 | -1.3314 |
8 | 1.2037 |
6 | 0.7812 |
2 | -0.0639 |
4 | 0.3586 |
7 | 0.9924 |
1 | -0.2751 |
4 | 0.3586 |
Price to Sales (ratio) (Xi) | Z = (Xi -Mean(X)) /SD(X) |
0.8 | 1.1899 |
0.4 | -0.1391 |
0.2 | -0.8036 |
1.1 | 2.1867 |
1.2 | 2.5189 |
0.4 | -0.1391 |
0.4 | -0.1391 |
0.1 | -1.1358 |
0.3 | -0.4713 |
0.6 | 0.5254 |
0.3 | -0.4713 |
0.2 | -0.8036 |
0.1 | -1.1358 |
0.2 | -0.8036 |
0.7 | 0.8577 |
0.2 | -0.8036 |
0.2 | -0.8036 |
0.7 | 0.8577 |
0.1 | -1.1358 |
0.3 | -0.4713 |
0.7 | 0.8577 |
0.6 | 0.5254 |
0.1 | -1.1358 |
0.1 | -1.1358 |
0.3 | -0.4713 |
0.5 | 0.1932 |
0.5 | 0.1932 |
0.5 | 0.1932 |
0.4 | -0.1391 |
0.8 | 1.1899 |
0.6 | 0.5254 |
0.2 | -0.8036 |
0.5 | 0.1932 |
0.1 | -1.1358 |
0.1 | -1.1358 |
0.1 | -1.1358 |
1.2 | 2.5189 |
0.6 | 0.5254 |
0.2 | -0.8036 |
0.5 | 0.1932 |
0.9 | 1.5222 |
0.5 | 0.1932 |
0.5 | 0.1932 |
Z-scores follow Standard normal distribution with mean 0 and standard deviation 1
Z-scores are majorly used for standardizing the values so that values on different scales can be compared.