In: Statistics and Probability
For a standard normal distribution, find
1. P(z > c)=0.3796
Find c.
2. P(z < c)=0.0257
Find c.
3. P(-2.68< z > -0.38)
4. P(z > -1.55)
5. P(z < -0.32)
solution
1)Using standard normal table,
P(Z > c) = 0.3796
= 1 - P(Z < c) = 0.3796
= P(Z < c ) = 1 - 0.3796
= P(Z < c ) = 0.6204
= P(Z < 0.31 ) = 0.6204
c=0.31 (using standard normal (Z) table )
(2)
Using standard normal table,
P(Z < c) = 0.0257
= P(Z < c) =0.0257
= P(Z < -1.95 ) = 0.0257
c = - 1.95 Using standard normal z table,
(3)P(-2.68< z > -0.38)
= P(Z <-0.38 ) - P(Z < -2.68)
Using z table,
= 0.3520-0.0037
probability=0.3483
(4)
P(z >-1.55 ) =1 - P(z <-1.55 )
Using z table,
= 1 -0.0606
= 0.9394
probability=0.9394
(5) P(z <-0.32 )
Using z table
=0.3745
probability=0.3745