In: Chemistry
Consider the decomposition of barium carbonate: BaCO3(s)???BaO(s)+CO2(g)
A) Calculate the equilibrium pressure of CO2 at 298 K.
B) Calculate the equilibrium pressure of CO2 at 1300K .
the given reaction is
BaC03 (s) -----> Ba0 (s) + C02 (g)
equilibrium constant Keq = pC02
we know that
at equilbrium
dGo = -RTlnKeq
now consider the given reaction
BaC03 (s) -----> Ba0 (s) + C02 (g)
dHo = dHo products - dHo reactants
dHo = dHo Ba0 + dHo C02 - dHo BaC03
dHo = -548.1 - 393.509 + 1213
dHo = 271.391 kJ/mol
similarly
dSo = dSo products - dSo reactants
dSo = dSo Ba0 + dSo C02 - dSo BaC03
dSo = 70.4 + 213.6 - 112.1
dSo = 171.9 J/K
now we know that
dGo = dHo - TdSo
so
1) AT 298 K
dGo = ( 271.319 x 1000) - ( 298 x 171.9)
dGo = 220.0928 kJ/mol
but
dGo = -RTlnKeq
so
220.0928 x 1000 = -8.314 x 298 x lnKeq
Keq= 2.629 x 10-39
so
pC02 = Keq = 2.629 x 10-39
equilibrium pressure of C02 at 298K is 2.629 x 10-39
atm
2) AT 1300 K
dGo = ( 271.319 x 1000) - ( 1300 x 171.9)
dGo = 47.849 kJ/mol
but
dGo = -RTlnKeq
so
47.849 x 1000 = -8.314 x 1300 x lnKeq
Keq= 0.01195
so
pC02 = Keq = 0.01195
equilibrium pressure of C02 at 1300 K is 0.01195
atm