In: Chemistry
1. Consider the decomposition of barium carbonate: BaCO3(s)←−→BaO(s)+CO2(g)
a. Using data from Appendix C in the textbook, calculate the equilibrium pressure of CO2 at 1200 K .
2.The reaction
SO2(g)+2H2S(g) ⇌ 3 S(s)+2H2O(g) is the basis of a suggested method for removal of SO2 , a pollutant that irritates airways causing coughing, from power-plant stack gases. The values below may be helpful when answering questions about the process. Calculate the equilibrium constant Kp for the reaction at a temperature of 298 K .
Substance | ΔG∘f (kJ/mol) |
ΔH∘f (kJ/mol) |
H2O(g) | − 228.6 | − 241.8 |
H2O(l) | − 237.1 | − 285.8 |
SO2(g) | − 300.4 | − 296.9 |
SO3(g) | − 370.4 | − 395.2 |
H2S(g) | − 33.01 | − 20.17 |
S(s) | 0 | 0 |
(1) BaCO3(s)←−→BaO(s)+CO2(g)
ΔG = ΔG0f products – ΔG0f reactants
ΔG = [( ΔG0f BaO(s) )+ ( ΔG0f CO2 (g) )]- [( ΔG0fBaCO3(s) )]
= [ -520.4 + (-394.4)] - [-1137.62]
= 222.82 kJ
We know that ΔG = -RT ln K
Where
R = gas constant = 8.314x10-3 kJ/(mol-K)
T = Temperature = 298 K
K = Equilibrium constant = ?
Plug the values we get
lnK = -ΔG /(RT)
= -89.93
K = e-89.93 = 8.74x10-40
K = pCO2 = 8.74x10-40 atm
(2)SO2(g)+2H2S(g) ⇌ 3 S(s)+2H2O(g)
ΔG = ΔG0fproducts – ΔG0freactants
ΔG = [(3x ΔG0fS(s) )+ (2 x ΔG0fH2O (g) )]- [( ΔG0fSO2(g) )+ (2x ΔG0fH2S (g) )]
= [(3x0) + ( 2x (-228.6))] - [ -300.4 + (2x(-33.01))]
= -90.78 kJ/mol
= -90.78x103 J
We know that ΔG = -RT ln K
Where
R = gas constant = 8.314x10-3 kJ/(mol-K)
T = Temperature = 298 K
K = Equilibrium constant = ?
Plug the values we get
lnK = -ΔG /(RT)
= 36.64
K = e36.64 = 8.18x1015