Question

In: Chemistry

Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2 in...

Consider the reaction shown below.

PbCO3(s) PbO(s) + CO2(g)

Calculate the equilibrium pressure of CO2 in the system at the following temperatures.

(a) 210°C atm = _______ atm

(b) 480°C atm = _______ atm

Note: To find the value of the equilibrium constant at each temperature you must first find the value of G0 at each temperature by using the equation G0 = H0 - TS0. For this reaction the values are H0 = +88.3 kJ/mol and S0= 151.3 J/mol*K

Solutions

Expert Solution


Related Solutions

Consider the decomposition of barium carbonate: BaCO3(s)???BaO(s)+CO2(g) A) Calculate the equilibrium pressure of CO2 at 298...
Consider the decomposition of barium carbonate: BaCO3(s)???BaO(s)+CO2(g) A) Calculate the equilibrium pressure of CO2 at 298 K. B) Calculate the equilibrium pressure of CO2 at 1300K .
The reaction CO2(g)+C(s)⇌2CO(g) has Kp=5.78 at 1200 K. A) Calculate the total pressure at equilibrium when...
The reaction CO2(g)+C(s)⇌2CO(g) has Kp=5.78 at 1200 K. A) Calculate the total pressure at equilibrium when 4.71 g of CO2 is introduced into a 10.0-L container and heated to 1200 K in the presence of 3.90 g of graphite. B) Repeat the calculation of part A in the presence of 0.31 g of graphite. Express your answer to three significant figures and include the appropriate units.
Consider the reaction: NO2 (g) + CO (g) ---> CO2 (g) + NO (g) The equilibrium...
Consider the reaction: NO2 (g) + CO (g) ---> CO2 (g) + NO (g) The equilibrium constant is at 701 K and 895 K are 2.57 and 567 L mol-1 s-1 so, A. Find the reaction order B. Energy of Activation C. Use part b to find the reaction rate constant at 200 C
Consider the following reaction: PbCO3(s)⇌PbO(s)+CO2(g) You may want to reference (Pages 833 - 836) Section 19.7...
Consider the following reaction: PbCO3(s)⇌PbO(s)+CO2(g) You may want to reference (Pages 833 - 836) Section 19.7 while completing this problem. Part A Using data in Appendix C in the textbook, calculate the equilibrium pressure of CO2 in the system at 410 ∘C. Express your answer using two significant figures. Part B Using data in Appendix C in the textbook, calculate the equilibrium pressure of CO2 in the system at 240 ∘C. Express your answer using two significant figures.
What is ΔGrxno (in kJ) at 647 K for the following reaction? PbO(g) + CO2(g) →...
What is ΔGrxno (in kJ) at 647 K for the following reaction? PbO(g) + CO2(g) → PbCO3(s) PbO: ΔHfo = -219.0 kJ/mol and So = 66.5 J/K mol) PbCO3(s): ΔHfo = -699.1 kJ/mol and So = 131.0 J/K mol) CO2: ΔHfo = -393.5 kJ/mol and So = 213.6 J/K mol)
Consider the following equilibrium. CS2(g) + 3 O2(g) equilibrium reaction arrow CO2(g) + 2 SO2(g) If...
Consider the following equilibrium. CS2(g) + 3 O2(g) equilibrium reaction arrow CO2(g) + 2 SO2(g) If the reaction is started in a container with 5.59 atm CS2 and 13.3 atm O2, what is Kp if the partial pressure of CO2 is 3.76 atm at equilibrium? (There is no change in temperature and the initial partial pressures of the products are equal to 0.)
True or False 1.For the following reaction at equilibrium:                        CaCO3(s) ⇌ CaO(s) + CO2(g)       
True or False 1.For the following reaction at equilibrium:                        CaCO3(s) ⇌ CaO(s) + CO2(g)                        increasing the total pressure by adding Ar(g) will shift the equilibrium to the left. 2.For the following reaction at equilibrium:                        H2(g) + F2(g) ⇌ 2HF(g)                        removing H2 will increase the amount of F2 present once equilibrium is reestablished. 3.Increasing the temperature of an exothermic reaction shifts the equilibrium position to the right. 4.For the following reaction at equilibrium:                        CaCO3(s) ⇌ CaO(s)...
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g)CaCO3(s)→CaO(s)+CO2(g) Estimate ΔG∘ΔG∘ for this reaction at each of the following temperatures....
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g)CaCO3(s)→CaO(s)+CO2(g) Estimate ΔG∘ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ΔH∘ and ΔS∘ΔS∘ do not change too much within the given temperature range.) Part B 1100 KK Express your answer using one decimal place. Part C 1420 KK Express your answer using one decimal place. Part D Predict whether or not the reaction in each part will be spontaneous. Drag the appropriate items to their respective bins. Reaction conducted at 1100 KK...
1. Determine the enthalpy for this reaction: 2NaOH(s)+CO2(g) Na2CO3(s)+H2O(l) 2. Consider the reaction Na2CO3(s)Na2O(s)+CO2(g) with enthalpy...
1. Determine the enthalpy for this reaction: 2NaOH(s)+CO2(g) Na2CO3(s)+H2O(l) 2. Consider the reaction Na2CO3(s)Na2O(s)+CO2(g) with enthalpy of reaction Hrxn=321.5kJ/mol What is the enthalpy of formation of Na2O(s)? Express your answer in kilojoules per mole to one decimal place.
The equilibrium constant (Kp) for the reaction below is 4.40 at 2000. K. H2(g) + CO2(g)...
The equilibrium constant (Kp) for the reaction below is 4.40 at 2000. K. H2(g) + CO2(g) ⇌ H2O(g) + CO(g) Calculate Δ G o for the reaction. kJ/mol Calculate Δ G for the reaction when the partial pressures are PH2 = 0.22 atm, PCO2 = 0.72 atm, PH2O = 0.66 atm, and PCO = 1.16 atm.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT