Question

In: Chemistry

The equilibrium constant KcKc for C(s)+CO2(g)⇌2CO(g)C(s)+CO2(g)⇌2CO(g) is 1.9 at 1000 KK and 0.133 at 298 KK....

The equilibrium constant KcKc for C(s)+CO2(g)⇌2CO(g)C(s)+CO2(g)⇌2CO(g) is 1.9 at 1000 KK and 0.133 at 298 KK.

A. If excess CC is allowed to react with 25.5 gg of CO2CO2 in a 3.00 LL vessel at 1000 KK, how many grams of COCO are produced? Express your answer using two significant figures.

B. How many grams of CC are consumed? Express your answer using two significant figures.

C. If a smaller vessel is used for the reaction, will the yield of COCO be greater or smaller?

D. Is the reaction endothermic or exothermic?

Solutions

Expert Solution


Related Solutions

The reaction CO2(g)+C(s)⇌2CO(g) has Kp=5.78 at 1200 K. A) Calculate the total pressure at equilibrium when...
The reaction CO2(g)+C(s)⇌2CO(g) has Kp=5.78 at 1200 K. A) Calculate the total pressure at equilibrium when 4.71 g of CO2 is introduced into a 10.0-L container and heated to 1200 K in the presence of 3.90 g of graphite. B) Repeat the calculation of part A in the presence of 0.31 g of graphite. Express your answer to three significant figures and include the appropriate units.
Calculate the value of Kp for the equation. C(s) + CO2(g) 2CO(g) Kp=? Given that at...
Calculate the value of Kp for the equation. C(s) + CO2(g) 2CO(g) Kp=? Given that at a certain temperature: C(s) + 2H2O(g) CO2(g) + 2H2(g) Kp1= 3.53 H2(g) + CO2(g) H2O(g) + CO(g) Kp2 = 0.699 Kp=?????
Consider the decomposition of barium carbonate: BaCO3(s)???BaO(s)+CO2(g) A) Calculate the equilibrium pressure of CO2 at 298...
Consider the decomposition of barium carbonate: BaCO3(s)???BaO(s)+CO2(g) A) Calculate the equilibrium pressure of CO2 at 298 K. B) Calculate the equilibrium pressure of CO2 at 1300K .
Coke can be converted into CO in following reaction CO2(g) + C(s) -> 2CO(g). A coke...
Coke can be converted into CO in following reaction CO2(g) + C(s) -> 2CO(g). A coke that contains 84% carbon by mass and the balance noncombustible ash is fed to a reactor with a stoichiometric amount of CO2. The coke is fed at 77 oF, and the CO2 enters at 400 oF. Heat is transferred to the reactor in the amount of 5800 btu/lbm coke fed. The gaseous products and the solid reactor effluent (the ash and unburned carbon) leave...
Coke can be converted into CO in following reaction CO2(g) + C(s) -> 2CO(g). A coke...
Coke can be converted into CO in following reaction CO2(g) + C(s) -> 2CO(g). A coke that contains 84% carbon by mass and the balance noncombustible ash is fed to a reactor with a stoichiometric amount of CO2. The coke is fed at 77 oF, and the CO2 enters at 400 oF. Heat is transferred to the reactor in the amount of 5200 btu/lbm coke fed. The gaseous products and the solid reactor effluent (the ash and unburned carbon) leave...
Consider the following reversible Hetererogenes reaction: C(s) + CO2(g) -><- 2CO(g) When equalibrium is reached at...
Consider the following reversible Hetererogenes reaction: C(s) + CO2(g) -><- 2CO(g) When equalibrium is reached at a certain point the total pressure of the system is found to be 4.98 atm. If the equilibrium constant Kp for this reaction is equal to 1.67 at this temperature, calculate the equilibrium partial pressures of CO2 and CO gases? P(CO)eq= ?      P(CO2)eq=?
Calculate the cell potential and the equilibrium constant for the following reaction at 298 K: Co2+(aq)...
Calculate the cell potential and the equilibrium constant for the following reaction at 298 K: Co2+(aq) + 2I-(aq) Co(s) + I2(s) Hint: Carry at least 5 significant figures during intermediate calculations to avoid round off error when taking the antilogarithm. Equilibrium constant:
Consider the reaction and associated equilibrium constant: aA(g)⇌bB(g), Kc = 1.9 Find the equilibrium concentrations of...
Consider the reaction and associated equilibrium constant: aA(g)⇌bB(g), Kc = 1.9 Find the equilibrium concentrations of A and B for a=2 and b=2. Assume that the initial concentration of A is 1.0 M and that no B is present at the beginning of the reaction. Find the equilibrium concentrations of A and B for a = 2 and b = 1. Assume that the initial concentration of A is 1.0 M and that no B is present at the beginning...
Part A - At 100oC, The equilibrium constant for the reaction: CF4(g) + 2H2O(g) ⇌CO2(g) +...
Part A - At 100oC, The equilibrium constant for the reaction: CF4(g) + 2H2O(g) ⇌CO2(g) + 4HF(g)    is   Kc,1 = 5.9 And the equilibrium constant at 100oC for the reaction: CO(g) + ½ O2(g) ⇌ CO2(g)                      is   Kc,2 = 1.3 Compute the equilibrium constant at 100oC for the reaction (2 sig figs) 2 CF4(g) + 4H2O(g) ⇌2CO(g) + 8HF(g) + O2(g)          is Kc,3 = ? Part B - Consider the reaction below (Equilibrium Constant @ 300K = Kp = 0.150)...
The equilibrium constant  for the reaction CCl4(g) = C(s) + 2Cl2(g) at 700ºC is 0.85. Determine the...
The equilibrium constant  for the reaction CCl4(g) = C(s) + 2Cl2(g) at 700ºC is 0.85. Determine the initial pressure of carbon tetrachloride that will produce a total equilibrium pressure of 2.30 atm at 700ºC.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT