In: Physics
A rocket is projected upward from the earth's surface (r = RE) with an initial speed v0 that carries it to a distance r = 1.5 REfrom the center of the earth. What is the launch speed v0? Assume that air friction can be ignored.
given that ::
Me = Mass of earth = 5.972 x 1024 kg
Re = radius of earth = 6370 km
Ri = Re
Rf = 1.5 Re
the launch speed is given as ::
KE = PE ( eq. 1 )
(1/2) m vo2 = (G*M m / r) - (G * M m/ (r x 1.5))
(1/2)vo2 = (G *M / r) - (G * M / (r x 1.5)) = PE
vo = ? (2 * PE)
( eq. 2 )
PE = G M [ 1 / r - 1 / 1.5r ] ( eq. 3 )
where, iniversal gravitational constant = 6.67 x 10-11 N m2 kg-2
M = mass of earth
r = radius of earth
PE = (6.67 x 10-11 N m2 kg-2 ) ( 5.972 x 1024 kg) [ 1 / 6370 - 1.5 x 6370 ]
PE = 39.8199 x 1013 [ 1 / 6370 - 1 / 9555 ]
PE = 39.8199 x 1013 [ 1 / 19110 ] = 0.002083 x 1013
using eq. 2,
vo = ? (2 * PE) = ? ( 2 x 0.002083 x 1013 ) = ? ( 0.004166 x 1013 km )
vo = ?4.166 x 1013 m/s
vo = 6.45 x 106 m/s