Question

In: Physics

A rocket takes off vertically from the launchpad with no initial velocity but a constant upward...

A rocket takes off vertically from the launchpad with no initial velocity but a constant upward acceleration of 2.25 m/s2 . At 15.4s after blastoff, the engines fail completely so the only force on the rocket from then on is the pull of gravity (free fall). a) What is the maximum height the rocket will reach above the launchpad? b) How fast is the rocket moving at the instant before it crashes onto the launchpad? c) How much longer after the engines fail does it take for the rocket to crash on the launchpad?

Solutions

Expert Solution


Related Solutions

A rocket takes off vertically from the launchpad with no initial velocity but a constant upward...
A rocket takes off vertically from the launchpad with no initial velocity but a constant upward acceleration of 2.5 m/s^2. At 10 s after takeoff, the engines fail completely so the only force on the rocket from then on is the pull of gravity. A) What is the maximum height the rocket will reach above the launchpad? B) How long after engine failure does it take for the rocket to crash back down?
A 7400 kg rocket blasts off vertically from the launch pad with a constant upward acceleration...
A 7400 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.15 m/s2 and feels no appreciable air resistance. When it has reached a height of 550 m , its engines suddenly fail so that the only force acting on it is now gravity. a)What is the maximum height this rocket will reach above the launch pad? b)How much time after engine failure will elapse before the rocket comes crashing down to the launch...
A 7450 kg rocket blasts off vertically from the launch pad with a constant upward acceleration...
A 7450 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.25 m/s2 and feels no appreciable air resistance. When it has reached a height of 500 m , its engines suddenly fail so that the only force acting on it is now gravity. A. What is the maximum height this rocket will reach above the launch pad? B. How much time after engine failure will elapse before the rocket comes crashing down to...
A 7800 kg rocket blasts off vertically from the launch pad with a constant upward acceleration...
A 7800 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.15 m/s2 and feels no appreciable air resistance. When it has reached a height of 575 m , its engines suddenly fail so that the only force acting on it is now gravity. A) What is the maximum height this rocket will reach above the launch pad? b)How much time after engine failure will elapse before the rocket comes crashing down to the...
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial...
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 79.4 m/s at ground level. The engines then fire, and the rocket accelerates upward at 3.90 m/s2 until it reaches an altitude of 1200 m. At that point its engines fail, and the rocket goes into free fall, with an acceleration of −9.80 m/s2. (You will need to consider the motion while the engine is operating and the free-fall motion separately.) (a)...
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial...
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 79.2 m/s at ground level. The engines then fire, and the rocket accelerates upward at 3.90 m/s2 until it reaches an altitude of 1060 m. At that point its engines fail, and the rocket goes into free fall, with an acceleration of −9.80 m/s2. (You will need to consider the motion while the engine is operating and the free-fall motion separately.) (a)...
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial...
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.8 m/s at ground level. The engines then fire, and the rocket accelerates upward at 4.20 m/s2 until it reaches an altitude of 990 m. At that point its engines fail, and the rocket goes into free fall, with an acceleration of ❝9.80 m/s2. (You will need to consider the motion while the engine is operating and the free-fall motion separately.) (a)...
A ball is thrown vertically upward from a height of 5 ft with an initial velocity...
A ball is thrown vertically upward from a height of 5 ft with an initial velocity of 40 feet per second. Note that the acceleration of the ball is given by a(t) = −32 m/s2. How high will the ball go? When does the ball hit the ground? What is the velocity of the ball when it hits the ground?
A model rocket blasts off from the ground, rising straight upward with a constant acceleration that...
A model rocket blasts off from the ground, rising straight upward with a constant acceleration that has a magnitude of 91.3 m/s2 for 1.79 seconds, at which point its fuel abruptly runs out. Air resistance has no effect on its flight. What maximum altitude (above the ground) will the rocket reach?
An object is thrown vertically upward with an initial velocity of 10 m/sec from a height...
An object is thrown vertically upward with an initial velocity of 10 m/sec from a height of 3 meters. In meters, find the highest point it reaches. (Round your answer to three decimal places, in m) Find when it hits the ground. (Enter your answer in seconds. Round your answer to three decimal places in seconds)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT