Question

In: Chemistry

Consider the reaction: NO2 (g) + CO (g) ---> CO2 (g) + NO (g) The equilibrium...

Consider the reaction: NO2 (g) + CO (g) ---> CO2 (g) + NO (g)

The equilibrium constant is at 701 K and 895 K are 2.57 and 567 L mol-1 s-1 so,

A. Find the reaction order

B. Energy of Activation

C. Use part b to find the reaction rate constant at 200 C

Solutions

Expert Solution


Related Solutions

Consider the reaction N2O4 (g) ? 2 NO2 (g). At equilibrium, a 2.00-L reaction vessel contains...
Consider the reaction N2O4 (g) ? 2 NO2 (g). At equilibrium, a 2.00-L reaction vessel contains NO2 at a pressure of 0.269 atm and N2O4 at a pressure of 0.500 atm. The reaction vessel is then compressed to 1.00 L. What will be the pressures of NO2 and N2O4 once equilibrium is re-established?
The reaction NO2 (g) + NO (g) ⇌ N2O (g) + O2 (g) reached equilibrium at...
The reaction NO2 (g) + NO (g) ⇌ N2O (g) + O2 (g) reached equilibrium at a certain high temperature. Originally, the reaction vessel contained the following initial concentration: [NO2]i = 0.0560 M, [NO]i = 0.294 M, [N2O] = 0.184 M, and [O2] = 0.377 M. The concentration of the NO2, the only colored gas in the mixture, was monitored by following the intensity of the color. At equilibrium, the NO2 concentration had become 0.118 M. What is the value...
Consider the reaction: 2 NO2 (g) ⇌ N2O4 (g) The ΔGf° for NO2 (g) = 52...
Consider the reaction: 2 NO2 (g) ⇌ N2O4 (g) The ΔGf° for NO2 (g) = 52 kJ/mol and for N2O4 (g) = 98 kJ/mol at 298 K. Calculate the ΔG at the following values. 0.8 M NO2 (g) & 3.0 M N2O4 (g) 4.0 M NO2 (g) & 0.9 M N2O4 (g) 2.2 M NO2 (g) & 2.4 M N2O4 (g) 2.4 M NO2 (g) & 2.2 M N2O4 (g)
PS8.2. The equilibrium constant, KP, for the reaction CO2(g) + H2(g) H2O(g) + CO(g) is 0.138....
PS8.2. The equilibrium constant, KP, for the reaction CO2(g) + H2(g) H2O(g) + CO(g) is 0.138. Calculate the partial pressure of all species at equilibrium for each of the following original mixtures: a) 1.36 atm of CO2 and 1.36 atm of H2. b) 0.87 atm of CO2, 0.87 atm of H2 and 0.87 atm of H2O(g). c) 0.64 atm of H2O and 0.64 atm of CO.
Consider the following reaction: CO (g) + H2O (g) ⇌ CO2 (g) + H2(g) If you...
Consider the following reaction: CO (g) + H2O (g) ⇌ CO2 (g) + H2(g) If you start with a mixture containing 1.00 mol of CO and 1.00 mol of H2O, calculate the number of moles of each component in the mixture when equilibrium is reached at 1000 °C. The mixture contains 0.43 mol H2? nCO = nH2O = nCO2 = How do I work this out?
Consider the following equilibrium. CS2(g) + 3 O2(g) equilibrium reaction arrow CO2(g) + 2 SO2(g) If...
Consider the following equilibrium. CS2(g) + 3 O2(g) equilibrium reaction arrow CO2(g) + 2 SO2(g) If the reaction is started in a container with 5.59 atm CS2 and 13.3 atm O2, what is Kp if the partial pressure of CO2 is 3.76 atm at equilibrium? (There is no change in temperature and the initial partial pressures of the products are equal to 0.)
23.Consider the following equilibrium process at 686°C: CO2(g) + H2(g) ⇌ CO(g) + H2O(g) The equilibrium...
23.Consider the following equilibrium process at 686°C: CO2(g) + H2(g) ⇌ CO(g) + H2O(g) The equilibrium concentrations of the reacting species are [CO] = 0.0580 M, [H2] = 0.0430 M, [CO2] = 0.0900 M, and [H2O] = 0.0420 M. (a) Calculate Kc for the reaction at 686°C. ________ (b) If we add CO2 to increase its concentration to 0.460 mol / L, what will the concentrations of all the gases be when equilibrium is reestablished? CO2: M H2: M CO:...
The equilibrium constant for the reaction SO2(g)+NO2(g)⇌SO3(g)+NO(g) is 3.0. Find the amount of NO2 that must...
The equilibrium constant for the reaction SO2(g)+NO2(g)⇌SO3(g)+NO(g) is 3.0. Find the amount of NO2 that must be added to 2.3 mol of SO2 in order to form 1.1 mol of SO3 at equilibrium.
Consider the equilibrium reaction CO(g)+H2O(g)⇋CO2(g)+H2(g) Determine how each change in the left-hand column will stress the...
Consider the equilibrium reaction CO(g)+H2O(g)⇋CO2(g)+H2(g) Determine how each change in the left-hand column will stress the system and in which direction the equilibrium reaction will shift in response. Drag the appropriate labels to their respective targets Change System Stress Equilibrium shif Add CO(g) Remove H2O(g) Add CO2(g) Remove H2(g) Choices for system stress: Forward reaction rate temporarily decreases, Reverse reaction rate temporarily decrease, Reverse reaction rate temporarily increases, Forward reaction rate temporarily increases Choices for equilibrium shift: increase reactant ,...
Consider the reaction: 2 NO2(g) → N2O4(g) Calculate ΔG (in kJ/mol) at 298°K if the equilibrium...
Consider the reaction: 2 NO2(g) → N2O4(g) Calculate ΔG (in kJ/mol) at 298°K if the equilibrium partial pressures of NO2 and N2O4 are 1.337 atm and 0.657 atm, respectively.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT