Question

In: Chemistry

The equilibrium constant for the reaction SO2(g)+NO2(g)⇌SO3(g)+NO(g) is 3.0. Find the amount of NO2 that must...

The equilibrium constant for the reaction SO2(g)+NO2(g)⇌SO3(g)+NO(g) is 3.0. Find the amount of NO2 that must be added to 2.3 mol of SO2 in order to form 1.1 mol of SO3 at equilibrium.

Solutions

Expert Solution

One other thing that you must state for this problem is the VOLUME in which this occurs. I will assume 1.00 liter to solve it

SO2(g) + NO2(g) = SO3(g) + NO(g)

If 1.1 mol of SO3 forms at equilibrium, then 1.1 mol of NO must also be formed.

Also, if the initial concentration of SO2 is 2.3 mol then at equilibrium its moles must be reduced to (2.3 mol - 1.1 mol = 1.2 mol).

Let the volume = 1 L

So, equilibrium concentrations are;

[SO2] = 1.2 mol /L = 1.2 M

[SO3] = 1.1 M

[NO] = 1.1 M

Let "x" represent the initial concentration of NO2 introduced to the SO2. The amount that will remain at equilibriums will be (x - 1.1) M. Now set up the equilibrium expression.

K = [SO3][NO] / [SO2][NO2]

3.1 = [ (1.1)(1.1) ] / [ (1.2) (x - 1.1) ]

3.1 = (1.21) / (1.2x - 1.32)

1.2x - 1.32 = 1.21 / 3.1

1.2x - 1.32 = 0.39

1.2x = 0.39 + 1.32

1.2x = 1.71

x = 1.71 / 1.2

x = 1.43 M

Answer: 1.43 M or 1.43 moles/Liter must be introduced (3 significant figures).


Related Solutions

At a certain temperature, the equilibrium constant, Kc, for this reaction is 2.60 SO2(g) + NO2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 2.60 SO2(g) + NO2(g) <--> SO3(g) + NO(g) At this temperature, calculate the number of moles of NO2(g) that must be added to 3.12 mol of SO2(g) in order to form 1.30 mol of SO3(g) equilibrium
For the reaction SO3(g) + NO(g) NO2(g) + SO2(g) Kc was found to be 0.500 at...
For the reaction SO3(g) + NO(g) NO2(g) + SO2(g) Kc was found to be 0.500 at a certain temperature. A reaction mixture is prepared in which 0.130 mol NO2 and 0.130 mol of SO2 are placed in a 3.00 L vessel. After the system reaches equilibrium what will be the equilibrium concentrations of all four gases?
For the reaction SO2(g) + NO2(g) == NO(g) + SO3(g), Kc = 85.0 at 460
For the reaction SO2(g) + NO2(g) == NO(g) + SO3(g), Kc = 85.0 at 460
SO3(g) + NO(g) NO2(g) + SO2(g) Kc was found to be 0.500 at a certain temperature....
SO3(g) + NO(g) NO2(g) + SO2(g) Kc was found to be 0.500 at a certain temperature. A reaction mixture is prepared in which 0.375 mol NO2 and 0.375 mol of SO2 are placed in a 4.00 L vessel. After the system reaches equilibrium what will be the equilibrium concentrations of all four gases? How do these equilibrium values compare to the values when 0.750 mol of SO3 and 0.750 mol of NO are placed in a 8.00 L container and...
The reaction NO2 (g) + NO (g) ⇌ N2O (g) + O2 (g) reached equilibrium at...
The reaction NO2 (g) + NO (g) ⇌ N2O (g) + O2 (g) reached equilibrium at a certain high temperature. Originally, the reaction vessel contained the following initial concentration: [NO2]i = 0.0560 M, [NO]i = 0.294 M, [N2O] = 0.184 M, and [O2] = 0.377 M. The concentration of the NO2, the only colored gas in the mixture, was monitored by following the intensity of the color. At equilibrium, the NO2 concentration had become 0.118 M. What is the value...
Consider the reaction: NO2 (g) + CO (g) ---> CO2 (g) + NO (g) The equilibrium...
Consider the reaction: NO2 (g) + CO (g) ---> CO2 (g) + NO (g) The equilibrium constant is at 701 K and 895 K are 2.57 and 567 L mol-1 s-1 so, A. Find the reaction order B. Energy of Activation C. Use part b to find the reaction rate constant at 200 C
The reaction, 2 SO3(g) 2 SO2(g) + O2(g) is endothermic. Predict what will happen with following...
The reaction, 2 SO3(g) 2 SO2(g) + O2(g) is endothermic. Predict what will happen with following changes. List the shift and state the reason. a. Temperature increased: b. Pressure decreased: c. More O2 was added: d. V olume decreased: e. Catalyst was added:
Consider the following reaction at 25.0 °C and 760.0 torr: SO3 (l) → SO2 (g) +...
Consider the following reaction at 25.0 °C and 760.0 torr: SO3 (l) → SO2 (g) + ½ O2 (g) The following data were obtained. Compound H°f(kJ/mole) SO3 (l) -395.7 SO2(g) -296.8 O2(g) 0.00 Calculate ∆H° for the reaction. The reaction is ________. Calculate the volume of the products if 2.25 g of SO3 (l) is decomposed at 25.0 °C and 760.0 torr. Calculate the partial pressure of oxygen gas in this reaction. Calculate ∆H° for the reaction: 3SO2 (g) +...
Consider the equilibrium Na2O(s) + SO2(g) ⇌ Na2SO3(s). (a) Write the equilibrium-constant expression for this reaction in terms of partial pressures.
Consider the equilibrium Na2O(s) + SO2(g) ⇌ Na2SO3(s).(a) Write the equilibrium-constant expression for this reaction in terms of partial pressures.(b) All the compounds in this reaction are soluble in water. Rewrite the equilibrium-constant expression in terms of molarities for the aqueous reaction.  
For the system SO3 ( g) ⇔ SO2 (g ) + 1 2 O2 ( g)...
For the system SO3 ( g) ⇔ SO2 (g ) + 1 2 O2 ( g) at 1000 K, K = 0.45. Sulfur trioxide, originally at 1.00 atm pressure, partially dissociates to SO2 and O2 at 1000 K. what is its partial pressure at equilibrium?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT