Question

In: Advanced Math

Solve the differential equation Y’(t) = AY(t), with initial condition Y(0) = [1;0] (a 2x1 matrix);...

Solve the differential equation Y’(t) = AY(t), with initial condition Y(0) = [1;0] (a 2x1 matrix); where A = [ 9 , 5 ; -6 , -2 ]. Then, using Euler’s method with step size h=.1 over [ 0 , .5 ] fill in the table with header where the 2x1 matrix Yi is the approximation of the exact solution Y(ti) :
t Yi Y(ti) ||Y(ti) – Yi ||

Solutions

Expert Solution


Related Solutions

Solve the equation y'=5-8y with initial condition y'(0)=0
Solve the equation y'=5-8y with initial condition y'(0)=0
Consider the system modeled by the differential equation dy/dt - y = t with initial condition y(0) = 1
Consider the system modeled by the differential equation                               dy/dt - y = t    with initial condition y(0) = 1 the exact solution is given by y(t) = 2et − t − 1   Note, the differential equation dy/dt - y =t can be written as                                               dy/dt = t + y using Euler’s approximation of dy/dt = (y(t + Dt) – y(t))/ Dt                               (y(t + Dt) – y(t))/ Dt = (t + y)                                y(t + Dt) =...
Solve y''-y=e^t(2cos(t)-sin(t)) with initial condition y(0)=y'(0)=0
Solve y''-y=e^t(2cos(t)-sin(t)) with initial condition y(0)=y'(0)=0
Solve the differential equation. y'' − 8y' + 20y = te^t, y(0) = 0, y'(0) =...
Solve the differential equation. y'' − 8y' + 20y = te^t, y(0) = 0, y'(0) = 0 (Answer using fractions)
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Solve the differential equation y'' − y' − 2y = 9e^2t , with initial conditions y(0)...
Solve the differential equation y'' − y' − 2y = 9e^2t , with initial conditions y(0) = 3, y' (0) = −2, using two different methods. Indicate clearly which methods you are using. First method: Second method:
Consider the differential equation y′(t)+9y(t)=−4cos(5t)u(t), with initial condition y(0)=4, A)Find the Laplace transform of the solution...
Consider the differential equation y′(t)+9y(t)=−4cos(5t)u(t), with initial condition y(0)=4, A)Find the Laplace transform of the solution Y(s).Y(s). Write the solution as a single fraction in s. Y(s)= ______________ B) Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form (c/(s-p)), where c is a constant and the root p is a constant. Both c and p may be complex. Y(s)= ____ + ______ +______ C)...
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Solve the differential equation by variation of parameters, subject to the initial conditions y(0) = 1,...
Solve the differential equation by variation of parameters, subject to the initial conditions y(0) = 1, y'(0) = 0. y'' + 2y' − 8y = 4e−3x − e−x
Solve the differential equation by variation of parameters, subject to the initial conditions y(0) = 1,...
Solve the differential equation by variation of parameters, subject to the initial conditions y(0) = 1, y'(0) = 0. 2y'' + y' − y = x + 7
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT