Question

In: Math

Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...

Initial value problem : Differential equations:

dx/dt = x + 2y

dy/dt = 2x + y

Initial conditions:

x(0) = 0

y(0) = 2

a) Find the solution to this initial value problem

(yes, I know, the text says that the solutions are

x(t)= e^3t - e^-t and y(x) = e^3t + e^-t

and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to hand in.

Solutions

Expert Solution


Related Solutions

Solve the given initial-value problem. dx/dt = y − 1 dy/dt = −6x + 2y x(0)...
Solve the given initial-value problem. dx/dt = y − 1 dy/dt = −6x + 2y x(0) = 0, y(0) = 0
Use the Laplace transform to solve the given system of differential equations. dx/dt + 2x +dy/dt=...
Use the Laplace transform to solve the given system of differential equations. dx/dt + 2x +dy/dt= 1 dx/dt− x+ dy/dt− y= e^t x(0) = 0, y(0) = 0
dx/dt = -5x + y , dy/dt = 4x - 2y
dx/dt = -5x + y , dy/dt = 4x - 2y
Integrate the following differential equations: a.)  y(2x−y+2)dx+2(x−y)dy = 0; b.)  yV-2yIV+3y''' - 2y'' = -x + ex.
Integrate the following differential equations: a.)  y(2x−y+2)dx+2(x−y)dy = 0; b.)  yV-2yIV+3y''' - 2y'' = -x + ex.
Find the general solution of the differential equation (x + 2y) (dx-dy) = dx + dy.
Find the general solution of the differential equation (x + 2y) (dx-dy) = dx + dy.
Use a LaPlace transform to solve d^2x/dt^2+dx/dt+dy/dt=0 d^2y/dt^2+dy/dt-4dy/dt=0 x(0)=1,x'(0)=0 y(0)=-1,y'(0)=5
Use a LaPlace transform to solve d^2x/dt^2+dx/dt+dy/dt=0 d^2y/dt^2+dy/dt-4dy/dt=0 x(0)=1,x'(0)=0 y(0)=-1,y'(0)=5
dy/dx+(y/2x)=(x/(y^3))
dy/dx+(y/2x)=(x/(y^3))
differential equation y'=dy/dx = -(3xey+2y)/ (x2ey+x). find the solution
differential equation y'=dy/dx = -(3xey+2y)/ (x2ey+x). find the solution
Solve this differential equation (4x - 2y)dx + (2x - 9y)dy = 0
Solve this differential equation (4x - 2y)dx + (2x - 9y)dy = 0
dx dt =ax+by dy dt =−x − y, 2. As the values of a and b...
dx dt =ax+by dy dt =−x − y, 2. As the values of a and b are changed so that the point (a,b) moves from one region to another, the type of the linear system changes, that is, a bifurcation occurs. Which of these bifurcations is important for the long-term behavior of solutions? Which of these bifurcations corresponds to a dramatic change in the phase plane or the x(t)and y(t)-graphs?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT