Question

In: Civil Engineering

From load analysis, the following are the factored design forces result: Mu = 440 KN-m, Vu...

From load analysis, the following are the factored design forces result: Mu = 440 KN-m, Vu = 280 KN. The beam has a width of 400 mm and a total depth of 500 mm. Use f’c = 20.7 MPa, fy for shear reinforcement is 275 MPa, fy for main bars is 415 MPa, concrete cover to the centroid of the bars both in tension and compression is 65 mm, steel ratio at balanced condition is 0.02, lateral ties are 12 mm diameter. Normal weight concrete. Determine the required spacing of transverse reinforcement due to the factored shear in mm. Express your answer in two decimal places.

Calculate the required area of tension reinforcement in mm2 due to the factored moment, Mu. Express your answer in two decimal places.

Solutions

Expert Solution


Related Solutions

Design a RC wall of 4.6m height to support a factored load of 650 KN/m and...
Design a RC wall of 4.6m height to support a factored load of 650 KN/m and factored moment of 30 KNm at right angles to the length of wall. The distance between cross wall is 4m. Sketch the reinforcement details.
A simply supported flanged beam subjected to a factored load of 60 kN/m (including dead load...
A simply supported flanged beam subjected to a factored load of 60 kN/m (including dead load and live load). The beam has an overall depth of 600 mm including slab thickness of 100 mm. The width of the beam is 230 mm, effective span of the beam is 6.25 m and effective cover to the tension reinforcement is 50 mm. Assume M25 grade concrete and Fe415 steel. Check whether the beam needs to be designed as singly reinforced or doubly...
A 450 mm × 650 mm column supports factored axial load of 2500 kN centered in...
A 450 mm × 650 mm column supports factored axial load of 2500 kN centered in single footing. After assuming the depth and density of soil above footing, assume the required depth of footing [10 marks]. a) Check depth due to two-way shear b) Check depth due to one-way shear action c) Calculate the bending moment and steel reinforcement e) Determine development length of dowels d) Check bearing stress e) Determine development length of dowels
What is the maximum tension (kN) on a cable carrying 2.5 kN/m uniform load if the...
What is the maximum tension (kN) on a cable carrying 2.5 kN/m uniform load if the lowest point of the cable is 40m and 3m away from the one of the support along the horizontal and vertical direction respectively? Round off to 3 decimal places.
Sectional bending moment due to counting load MU = 525 kN Find the amount of reinforcement...
Sectional bending moment due to counting load MU = 525 kN Find the amount of reinforcement required. The cover thickness is 40mm, and the stirrup rebar is D10. Design. Compressed reinforcing bars do not have to be yielded, and the size of the section can only be increased if design is not possible under the given conditions. b = 330 mm, h = 600 mm, f ck = 40 MPa, f y = 500 MPa, using tensile and compressed rebar...
Sectional bending moment due to counting load MU = 525 kN Find the amount of reinforcement...
Sectional bending moment due to counting load MU = 525 kN Find the amount of reinforcement required. The cover thickness is 40mm, and the stirrup rebar is D10. Design. Compressed reinforcing bars do not have to be yielded, and the size of the section can only be increased if design is not possible under the given conditions. b = 310 mm, h = 520 mm, f ck = 29 MPa, f y = 520 MPa, using tensile and compressed rebar...
Design a circular column, using approximate methods, for a factored load of 80 Kips and a...
Design a circular column, using approximate methods, for a factored load of 80 Kips and a factored moment of 40 Kip-ft. about x and y axes each. The diameter of column is 18". Material strengths are fc' = 4Ksi and fy = 60Ksi. Use appropriate column interaction diagram.
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load of 230 KN. The allowable bearing pressure is 230 KN/m2 and the level of the bottom of the footing is 1.5 m below the ground surface. Assume concrete weighs 24 KN/m3, that of soil is 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 248 MPa,. Use 25 mm diameter reinforcing bars. Thickness of footing = 500 mm and concrete cover is 75 mm. Calculate...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load of 230 KN. The allowable bearing pressure is 230 KN/m2 and the level of the bottom of the footing is 1.5 m below the ground surface. Assume concrete weighs 24 KN/m3, that of soil is 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 248 MPa,. Use 25 mm diameter reinforcing bars. Thickness of footing = 500 mm and concrete cover is 75 mm. Calculate...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load of 230 KN. The allowable bearing pressure is 230 KN/m2 and the level of the bottom of the footing is 1.5 m below the ground surface. Assume concrete weighs 24 KN/m3, that of soil is 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 248 MPa,. Use 25 mm diameter reinforcing bars. Thickness of footing = 500 mm and concrete cover is 75 mm. Calculate...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT