Question

In: Civil Engineering

Design a short square tied column to carry a factored axial load of 1300k and a...

Design a short square tied column to carry a factored axial load of 1300k and a factored moment of 550kft. Place the reinforcement uniformly around the column. Design the ties. Assume interior exposure, f’c = 4000psi, fy = 60,000psi

Solutions

Expert Solution


Related Solutions

Design a short square tied column to carry a factored axial load of 1300k and a...
Design a short square tied column to carry a factored axial load of 1300k and a factored moment of 550kft. Place the reinforcement uniformly around the column. Design the ties. Assume interior exposure, f’c = 4000psi, fy = 60,000psi.
Design a square tied column to support an axial dead load of (W1) k and an...
Design a square tied column to support an axial dead load of (W1) k and an axial live load of (W2) k. Begin using approximately (X) percent longitudinal steel, a concrete strength of 4,000 psi and Grade 60 steel. Draw the details of reinforcement and check all ACI recommendation. W1 = 220 k W2 = 165 k X = 2%
Q1. The short tied column is to be used to support the following factored load and...
Q1. The short tied column is to be used to support the following factored load and moment: P= 1250 kN and M= 250 kN.m [10 marks]. fc=28 MPa fy=420 MPa a) Determine required dimensions and reinforcing bars using appropriate ACI column approach [2 marks]. b) Determine maximum ACI design axial load strength for selected column [2 marks]. c) Determine balanced failure point on axial moment interaction diagram [2 marks]. d) Determine the tie size and spacing [2 marks]. e) Draw...
1) Design a Tied column to support axial Dead load D = 280 K and axial...
1) Design a Tied column to support axial Dead load D = 280 K and axial live load = 500 k, initially assume 2% longitudinal reinforcement f’c = 4000 psi, fy = 60,000 psi. 2) Sketch the column cross-section and show long bars and ties
Prompt: Design the representative column for the factored axial load only. Assume pin connections top and...
Prompt: Design the representative column for the factored axial load only. Assume pin connections top and bottom. If you want, you might consider designing for 75% of capacity, to allow for remaining capacity for the lateral loads to be determined in the future. I'm Suppose to design a Concrete Column; many assumptions can be made, such as type/strength of concrete. The calculated axial load: Pu= 88.2 Kips
A square tied column with f’c=5 ksi and steel with fy=60 ksi sustains an axial load...
A square tied column with f’c=5 ksi and steel with fy=60 ksi sustains an axial load of 225 kips dead load and 375 kips live load and a bending moment of 110 kip-ft dead load and 160 kip-ft live load. Determine the minimum size column and its reinforcement.
Design a square interior column footing for a 15-in. square tied interior column that supports a...
Design a square interior column footing for a 15-in. square tied interior column that supports a dead load of 160 kips and live load of 180 kips. The column is reinforced with eight # 8 bars, also, the base of the footing is 6 ft below the grade line, the soil weight is 100 lb/ft3, the concrete weight is 150 lb/ft3, f’c = 4,000 psi, fy = 60,000 psi and qa = 4 kip/ft2.
A 450 mm × 650 mm column supports factored axial load of 2500 kN centered in...
A 450 mm × 650 mm column supports factored axial load of 2500 kN centered in single footing. After assuming the depth and density of soil above footing, assume the required depth of footing [10 marks]. a) Check depth due to two-way shear b) Check depth due to one-way shear action c) Calculate the bending moment and steel reinforcement e) Determine development length of dowels d) Check bearing stress e) Determine development length of dowels
Given: a. A 16 FT Column of A992 Steel. b. Factored Axial Load (Pu) equal to...
Given: a. A 16 FT Column of A992 Steel. b. Factored Axial Load (Pu) equal to 350 kips. c. Weak Axis Fixities i. Rotation fixed and translation free at the top. ii. Rotation fixed and translation fixed at the bottom. d. Strong-Axis Fixities i. Rotation free and translation free at top. ii. Rotation fixed and translation fixed at bottom. e. Limit Column Selections to Table 4-1 of AISC Steel Manual. f. Show full Calculations are required for final validation.
QUESTIONS: Design a square column footing for a 20-in. square tied interior column that supports loads...
QUESTIONS: Design a square column footing for a 20-in. square tied interior column that supports loads of DL (170) k and Live load LL (210) k. The column is reinforced with eight No 8 bars, the bottom of the footing is 5 foot below final grade, and the soil weighs 100 lb. /ft3 the allowable soil pressure is 4 w ksf. The concrete strength is 4,000 psi and the steel is Grade 60.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT