Question

In: Civil Engineering

What is the maximum tension (kN) on a cable carrying 2.5 kN/m uniform load if the...

What is the maximum tension (kN) on a cable carrying 2.5 kN/m uniform load if the lowest point of the cable is 40m and 3m away from the one of the support along the horizontal and vertical direction respectively? Round off to 3 decimal places.

Solutions

Expert Solution

Given a cable on which Uniformly distributed load (w) =  2.5KN/m is acting.

Lowest point on cable (h) = 40m and 3m away from one of the supports

As the lowest point is at midpoint on the cable, so 3m would be halfway on the cable, so the total length of the cable is (2 * 3) = 6m

therefore, Length of cable (L) = 6m

We need to find maximum tension on the cable

The maximum tension in the cable is the Resultant reaction at any support

So, first we need to determine vertical reaction and horizontal reaction at any of the support

  • Vertical reaction

as the loading is uniform , so the support reaction will be:

VA = VC = (wL)/2 = (2.5 * 6)/2 = 7.5KN

  • Horizontal reaction

As there is no horizontal force , so, HA = HC

Taking moment about point B (lowest point), and considering forces on left side, we get:

  

HA = 0.28125 KN

Maximum tension in cable (Tmax) = Resultant reaction at any support

Resultant reaction at A = RA

RA = 7.505 KN

Therefore, the maximum tension in the cable (Tmax) = 7.505 KN

  


Related Solutions

A rectangular beam carrying a uniform load of 26 KN/m including its own weight is limited...
A rectangular beam carrying a uniform load of 26 KN/m including its own weight is limited in cross section to 300 mm x 500 mm. The beam is simply supported in a span of 6 m. Using fc = 7 Mpa, fs = 124 Mpa, n = 12, ?? = 40 ???, ?? = 1.7 ???, ?????? ?ℎ? ????. Allow 65 mm distance from centroid of steel bars to extreme fibers.
A long footing supports a wall carrying a load of 260 kN per m. The soil...
A long footing supports a wall carrying a load of 260 kN per m. The soil at the site is saturated clay having a undrained shear strength of 117 kPa. The unit weight of the clay is 22 kN/m³ and it is suspected that occasionally the water table rises to the ground surface. What width in m (1 dp) of footing should be used if a minimum factor of safety of 2.4 is required? The footing depth is 1.2 m
square footing 4×4 m carrying a load of 400 KN and the moment of 200 KN.m...
square footing 4×4 m carrying a load of 400 KN and the moment of 200 KN.m compute the maximum and minimum bearing pressure
. A rectangular steel bar is subjected to a fluctuating load from 30 kN tension to...
. A rectangular steel bar is subjected to a fluctuating load from 30 kN tension to 30 kN compression. The bar is 30 mm wide and 7 mm thick with a hole in the middle that is 4 mm in diameter. Find the fatigue and yield factor of safety if the steel is cold-drawn AISI 1040. If the fatigue factor nf<1 and ny>1 then that means that the system will fail at a finite number of cycles. If that is...
A simply supported beam 10m long carries a uniform load of 24 kN/m. Using E =...
A simply supported beam 10m long carries a uniform load of 24 kN/m. Using E = 200 GPa, I = 240x10^6 mm4 Using CBM (conjugate beam method): A. Determine the rotation (in degrees) of the beam at a point 4m from the left support. B. Determine the deflection at a point 4m from the left support.
A cantilever beam 4m long carries a uniform load of 3.5 kN/m over a portion 1.5m...
A cantilever beam 4m long carries a uniform load of 3.5 kN/m over a portion 1.5m from the free end. E = 200 GPa and I = 30 x 10^6 mm^4 Using Area Moment Method a. Determine the rotation at the free end. b. Determine the deflection at the free end A simply supported beam of length 7m has a concentrated couple Mo of 10kNm (Counterclockwise) applied at one end. Using Double Integration Method The maximum deflection is located at...
A cantilever beam 4m long carries a uniform load of 3.5 kN/m over a portion 1.5m...
A cantilever beam 4m long carries a uniform load of 3.5 kN/m over a portion 1.5m from the free end. E = 200 GPa and I = 30 x 10^6 mm4 Using AMM (Area Moment Method): Determine the rotation at the free end. Determine the deflection at the free end.
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load of 230 KN. The allowable bearing pressure is 230 KN/m2 and the level of the bottom of the footing is 1.5 m below the ground surface. Assume concrete weighs 24 KN/m3, that of soil is 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 248 MPa,. Use 25 mm diameter reinforcing bars. Thickness of footing = 500 mm and concrete cover is 75 mm. Calculate...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load of 230 KN. The allowable bearing pressure is 230 KN/m2 and the level of the bottom of the footing is 1.5 m below the ground surface. Assume concrete weighs 24 KN/m3, that of soil is 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 248 MPa,. Use 25 mm diameter reinforcing bars. Thickness of footing = 500 mm and concrete cover is 75 mm. Calculate...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load of 230 KN. The allowable bearing pressure is 230 KN/m2 and the level of the bottom of the footing is 1.5 m below the ground surface. Assume concrete weighs 24 KN/m3, that of soil is 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 248 MPa,. Use 25 mm diameter reinforcing bars. Thickness of footing = 500 mm and concrete cover is 75 mm. Calculate...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT