Question

In: Civil Engineering

A 450 mm × 650 mm column supports factored axial load of 2500 kN centered in...

A 450 mm × 650 mm column supports factored axial load of 2500 kN centered in single footing. After assuming the depth and density of soil above footing, assume the required depth of footing [10 marks].

a) Check depth due to two-way shear

b) Check depth due to one-way shear action

c) Calculate the bending moment and steel reinforcement

e) Determine development length of dowels

d) Check bearing stress

e) Determine development length of dowels

Solutions

Expert Solution


Related Solutions

Design a RC wall of 4.6m height to support a factored load of 650 KN/m and...
Design a RC wall of 4.6m height to support a factored load of 650 KN/m and factored moment of 30 KNm at right angles to the length of wall. The distance between cross wall is 4m. Sketch the reinforcement details.
Design a short square tied column to carry a factored axial load of 1300k and a...
Design a short square tied column to carry a factored axial load of 1300k and a factored moment of 550kft. Place the reinforcement uniformly around the column. Design the ties. Assume interior exposure, f’c = 4000psi, fy = 60,000psi.
Design a short square tied column to carry a factored axial load of 1300k and a...
Design a short square tied column to carry a factored axial load of 1300k and a factored moment of 550kft. Place the reinforcement uniformly around the column. Design the ties. Assume interior exposure, f’c = 4000psi, fy = 60,000psi
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load of 230 KN. The allowable bearing pressure is 230 KN/m2 and the level of the bottom of the footing is 1.5 m below the ground surface. Assume concrete weighs 24 KN/m3, that of soil is 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 248 MPa,. Use 25 mm diameter reinforcing bars. Thickness of footing = 500 mm and concrete cover is 75 mm. Calculate...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load of 230 KN. The allowable bearing pressure is 230 KN/m2 and the level of the bottom of the footing is 1.5 m below the ground surface. Assume concrete weighs 24 KN/m3, that of soil is 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 248 MPa,. Use 25 mm diameter reinforcing bars. Thickness of footing = 500 mm and concrete cover is 75 mm. Calculate...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load...
A 400 mm concrete wall supports a dead load of 280 KN/m and a live load of 230 KN. The allowable bearing pressure is 230 KN/m2 and the level of the bottom of the footing is 1.5 m below the ground surface. Assume concrete weighs 24 KN/m3, that of soil is 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 248 MPa,. Use 25 mm diameter reinforcing bars. Thickness of footing = 500 mm and concrete cover is 75 mm. Calculate...
The column has dimension of 500 mm x 500 mm and carries an axial load of...
The column has dimension of 500 mm x 500 mm and carries an axial load of 1210 KN dead load and 650 KN live load. Allowable soil pressure is 240 Kpa. There is 0.7 m height of soil having a unit weight of 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 276.5 Mpa. The footing section is 2.8 m x 2.8 m with a 600 mm thickness. Use 25 mm diameter main bars.
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli...
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli of elasticity of plain concrete and steel are 25 GPa and 207 GPa, respectively, and the cross-sectional area of steel is 2% of that of the reinforced concrete. Considering the column as a structural member made of a composite material and subjected to load parallel to the steel rebars, calculate the following: a. the modulus of elasticity of the reinforced concrete b. the load...
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli...
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli of elasticity of plain concrete and steel are 25 GPa and 207 GPa, respectively, and the cross-sectional area of steel is 2% of that of the reinforced concrete. Considering the column as a structural member made of a composite material and subjected to load parallel to the steel rebars, calculate the following: a. the modulus of elasticity of the reinforced concrete b. the load...
Prompt: Design the representative column for the factored axial load only. Assume pin connections top and...
Prompt: Design the representative column for the factored axial load only. Assume pin connections top and bottom. If you want, you might consider designing for 75% of capacity, to allow for remaining capacity for the lateral loads to be determined in the future. I'm Suppose to design a Concrete Column; many assumptions can be made, such as type/strength of concrete. The calculated axial load: Pu= 88.2 Kips
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT