In: Operations Management
Suppose that the following are the quarterly sales data for the past 7 years.
1.Construct a time series plot and develop linear trend equation using the original data (with seasonal components).
2.Calculate 4-quarter moving average values for this time series (column E).
3.Calculate centered moving average values and seasonal indexes (column F and G).
4.Calculate seasonal indexes (column J) for the four quarters.
5.Copy seasonal indexes (column J) to column O, and calculate deseasonalized number sold (column P).
6.Construct a time series plot and develop linear trend equation using the deseasonalized data (without seasonal components).
| 
 Year  | 
 Number Sold  | 
| 
 1  | 
 35  | 
| 
 2  | 
 50  | 
| 
 3  | 
 75  | 
| 
 4  | 
 90  | 
| 
 5  | 
 105  | 
| 
 6  | 
 110  | 
| 
 7  | 
 130  | 
| 
 Year  | 
 Quarter  | 
 Number  | 
| 
 1  | 
 1  | 
 6  | 
| 
 2  | 
 15  | 
|
| 
 3  | 
 10  | 
|
| 
 4  | 
 4  | 
|
| 
 2  | 
 5  | 
 10  | 
| 
 6  | 
 18  | 
|
| 
 7  | 
 15  | 
|
| 
 8  | 
 7  | 
|
| 
 3  | 
 9  | 
 14  | 
| 
 10  | 
 26  | 
|
| 
 11  | 
 23  | 
|
| 
 12  | 
 12  | 
|
| 
 4  | 
 13  | 
 19  | 
| 
 14  | 
 28  | 
|
| 
 15  | 
 25  | 
|
| 
 16  | 
 18  | 
|
| 
 5  | 
 13  | 
 22  | 
| 
 14  | 
 34  | 
|
| 
 15  | 
 28  | 
|
| 
 16  | 
 21  | 
|
| 
 6  | 
 13  | 
 24  | 
| 
 14  | 
 36  | 
|
| 
 15  | 
 30  | 
|
| 
 16  | 
 20  | 
|
| 
 7  | 
 13  | 
 28  | 
| 
 14  | 
 40  | 
|
| 
 15  | 
 35  | 
|
| 
 16  | 
 27  | 
Computations


Result
| Yr. | Qtr | Number Sold | Trendline to original data | MA-4 | CMA | Seasonal indices | Qtr | Seasonal indices | Seasonal indices (normalized) | Seasonal indices (normalized) | Deseasonalized data | Trendline to deseasonalized data | 
| 1 | 1 | 6 | 8.66 | 1 | 0.89 | 0.90 | 0.90 | 6.67 | 7.39 | |||
| 2 | 15 | 9.59 | 2 | 1.35 | 1.36 | 1.36 | 11.02 | 8.44 | ||||
| 3 | 10 | 10.53 | 9.25 | 1.081 | 3 | 1.11 | 1.12 | 1.12 | 8.94 | 9.50 | ||
| 4 | 4 | 11.46 | 10.13 | 0.395 | 4 | 0.61 | 0.62 | 0.62 | 6.44 | 10.55 | ||
| 2 | 5 | 10 | 12.39 | 8.75 | 11.13 | 0.899 | 1 | 0.90 | 11.12 | 11.60 | ||
| 6 | 18 | 13.32 | 9.75 | 12.13 | 1.485 | 2 | 1.36 | 13.22 | 12.66 | |||
| 7 | 15 | 14.26 | 10.50 | 13.00 | 1.154 | 3 | 1.12 | 13.41 | 13.71 | |||
| 8 | 7 | 15.19 | 11.75 | 14.50 | 0.483 | 4 | 0.62 | 11.27 | 14.77 | |||
| 3 | 9 | 14 | 16.12 | 12.50 | 16.50 | 0.848 | 1 | 0.90 | 15.57 | 15.82 | ||
| 10 | 26 | 17.05 | 13.50 | 18.13 | 1.434 | 2 | 1.36 | 19.09 | 16.88 | |||
| 11 | 23 | 17.99 | 15.50 | 19.38 | 1.187 | 3 | 1.12 | 20.57 | 17.93 | |||
| 12 | 12 | 18.92 | 17.50 | 20.25 | 0.593 | 4 | 0.62 | 19.33 | 18.99 | |||
| 4 | 13 | 19 | 19.85 | 18.75 | 20.75 | 0.916 | 1 | 0.90 | 21.13 | 20.04 | ||
| 14 | 28 | 20.78 | 20.00 | 21.75 | 1.287 | 2 | 1.36 | 20.56 | 21.10 | |||
| 15 | 25 | 21.72 | 20.50 | 22.88 | 1.093 | 3 | 1.12 | 22.35 | 22.15 | |||
| 16 | 18 | 22.65 | 21.00 | 24.00 | 0.750 | 4 | 0.62 | 28.99 | 23.21 | |||
| 5 | 17 | 22 | 23.58 | 22.50 | 25.13 | 0.876 | 1 | 0.90 | 24.47 | 24.26 | ||
| 18 | 34 | 24.51 | 23.25 | 25.88 | 1.314 | 2 | 1.36 | 24.97 | 25.32 | |||
| 19 | 28 | 25.45 | 24.75 | 26.50 | 1.057 | 3 | 1.12 | 25.04 | 26.37 | |||
| 20 | 21 | 26.38 | 25.50 | 27.00 | 0.778 | 4 | 0.62 | 33.82 | 27.42 | |||
| 6 | 21 | 24 | 27.31 | 26.25 | 27.50 | 0.873 | 1 | 0.90 | 26.69 | 28.48 | ||
| 22 | 36 | 28.24 | 26.75 | 27.63 | 1.303 | 2 | 1.36 | 26.44 | 29.53 | |||
| 23 | 30 | 29.18 | 27.25 | 28.00 | 1.071 | 3 | 1.12 | 26.83 | 30.59 | |||
| 24 | 20 | 30.11 | 27.75 | 29.00 | 0.690 | 4 | 0.62 | 32.21 | 31.64 | |||
| 7 | 25 | 28 | 31.04 | 27.50 | 30.13 | 0.929 | 1 | 0.90 | 31.14 | 32.70 | ||
| 26 | 40 | 31.97 | 28.50 | 31.63 | 1.265 | 2 | 1.36 | 29.38 | 33.75 | |||
| 27 | 35 | 32.91 | 29.50 | 3 | 1.12 | 31.30 | 34.81 | |||||
| 28 | 27 | 33.84 | 30.75 | 4 | 0.62 | 43.49 | 35.86 | 
Graph
