In: Math
Here are quarterly data for the past two years, from these data, prepare a forecast for the upcoming year using decompostion. foreccast years 9 to 12. FORECAST ERROR?
| Period | Actual | period | Actual |
| 1 | 300 | 5 | 416 |
| 2 | 540 | 6 | 760 |
| 3 | 885 | 7 | 1191 |
| 4 | 580 | 8 | 760 |
By running regression of the form Y = a+bX
Where Y is actual and X is period, we get results of the form,
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.61 | |||||
| R Square | 0.37 | |||||
| Adjusted R Square | 0.27 | |||||
| Standard Error | 241.49 | |||||
| Observations | 8 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 2,09,738.67 | 2,09,738.67 | 3.60 | 0.11 | |
| Residual | 6 | 3,49,895.33 | 58,315.89 | |||
| Total | 7 | 5,59,634.00 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | 361.00 | 188.17 | 1.92 | 0.10 | -99.42 | 821.42 |
| Period | 70.67 | 37.26 | 1.90 | 0.11 | -20.51 | 161.84 |
| Period | Actual |
| 1 | 300 |
| 2 | 540 |
| 3 | 885 |
| 4 | 580 |
| 5 | 416 |
| 6 | 760 |
| 7 | 1191 |
| 8 | 760 |
| 9 | 997 |
| 10 | 1068 |
| 11 | 1138 |
Forecasts,
Period 9 = 361+70.67*9 = 997.03
Period 10 = 361+70.67*10 = 1067.7
Period 11 = 361+70.67*11 = 1138..37